Skip to main content
Log in

Comparison of Hydrogenated Bisphenol A and Bisphenol A Epoxies: Curing Behavior, Thermal and Mechanical Properties, Shape Memory Properties

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Hydrogenated bisphenol A epoxy resin was cured using different kind of curing agents, resulting in epoxy networks with better shape memory properties than bisphenol A epoxy networks. The non-isothermal curing kinetics investigated by differential scanning calorimetry (DSC) demonstrated that hydrogenated bisphenol A epoxy showed lower curing reactivity than bisphenol A epoxy, while it still could be cured well. The thermal and mechanical properties as well as shape memory properties were studied by dynamic mechanical analysis (DMA), DSC, thermogravimetric analysis (TGA), three-point bending test and U-type shape memory test and cyclic stretch test using DMA. Results manifested that hydrogenated bisphenol A epoxy systems exhibited lower shape transition temperature (lower T g ), slightly higher modulus, better toughness, much faster shape recovery rate, and better elongating ability at temperature above T g than bisphenol A epoxy systems, which was due to the rigidity of cyclohexane ring from its steric hindrance and favorable segmental mobility when absorbing external energy such as heating or bending. Moreover, the shape fixity and shape recovery ratio of all the samples were as high as 96.3~98.5% and 100% and their cycling stability during shape memory test was excellent. Although lower than bisphenol A epoxy networks, hydrogenated bisphenol A epoxy networks possessed high thermal stability with initial degradation temperature (Td5%) of >305 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Zhao, H. J. Qi, and T. Xie, Prog Polym Sci., 49-50, 79 (2015).

    Article  CAS  Google Scholar 

  2. M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, Prog Polym Sci., 49-50, 3 (2015).

    Article  CAS  Google Scholar 

  3. Q. Zhao, W. Zou, Y. Luo, and T. Xie, Sci. Adv., 2, 11421 (2016).

    Google Scholar 

  4. Z. Pei, Y. Yang, Q. Chen, Y. Wei, and Y. Ji, Adv. Mater., 28, 156 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Y. Yang, Z. Pei, Z. Li, Y. Wei, and Y. Ji, J. Am. Chem. Soc., 138, 2118 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. M. I. Lawton, K. R. Tillman, H. S. Mohammed, W. Kuang, D. A. Shipp, and P. T. Mather, ACS Macro Lett., 5, 203 (2016).

    Article  CAS  Google Scholar 

  7. R. R. Kohlmeyer, P. R. Buskohl, J. R. Deneault, M. F. Durstock, R. A. Vaia, and J. Chen, Adv. Mater., 26, 8114 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. D. Zhang, Q. Zhang, Y. Lu, J. Jiang, Y. Yao, S. Li, G. L. Liu, and Q. Liu, Nanomedicine, 12, 449 (2016).

    Google Scholar 

  9. Y. Zheng, R. Dong, J. Shen, and S. Guo, ACS. Appl. Mater., 8, 1371 (2016).

    Article  CAS  Google Scholar 

  10. Y. C. Chien, W. T. Chuang, U. S. Jeng, and S. H. Hsu, ACS. Appl. Mater., 9, 5419 (2017).

    Article  CAS  Google Scholar 

  11. N. Zheng, Z. Fang, W. Zou, Q. Zhao, and T. Xie, Angew Chem. Int. Ed., 55, 11421 (2016).

    Article  CAS  Google Scholar 

  12. A. Arnebold and A. Hartwig, Polymer, 83, 40 (2016).

    Article  CAS  Google Scholar 

  13. C. Li, J. Y. Dai, X. Q. Liu, Y. H. Jiang, S. Q. Ma, and J. Zhu, Macromol. Chem. Phys., 217, 1439 (2016).

    Article  CAS  Google Scholar 

  14. Z. Ma, Y. Wang, J. Zhu, J. Yu, and Z. Hu, J. Polym. Sci., Part A: Polym. Chem., 55, 1790 (2017).

    Article  CAS  Google Scholar 

  15. G. Zhang, Q. Zhao, L. Yang, W. Zou, X. Xi, and T. Xie, ACS Macro Lett., 5, 805 (2016).

    Article  CAS  Google Scholar 

  16. A. T. Detwiler and A. J. Lesser, J. Mater. Sci., 47, 3493 (2012).

    Article  CAS  Google Scholar 

  17. G. C. Psarras, J. Parthenios, and C. Galiotis, J. Mater. Sci., 36, 535 (2001).

    Article  CAS  Google Scholar 

  18. T. Xie and I. A. Rousseau, Polymer, 50, 1852 (2009).

    Article  CAS  Google Scholar 

  19. C. Liang, C. A. Rogers, and E. Malafeew, J. Intell. Mater. Syst. Struct., 8, 380 (1997).

    Article  CAS  Google Scholar 

  20. H. Sun, Y. Liu, H. Tan, and X. Du, J. Appl. Poly. Sci., 131, 39882 (2014).

    Google Scholar 

  21. Z. Wang, W. Song, L. Ke, and Y. Wang, Mater. Lett., 89, 216 (2012).

    Article  CAS  Google Scholar 

  22. M. Fan, J. Liu, X. Li, J. Zhang, and J. Cheng, J. Polym. Res., 21, 376 (2014).

    Article  CAS  Google Scholar 

  23. N. Zheng, G. Fang, Z. Cao, Q. Zhao, and T. Xie, Polym. Chem., 6, 3046 (2015).

    Article  CAS  Google Scholar 

  24. H. Meng and G. Li, Polymer, 54, 2199 (2013).

    Article  CAS  Google Scholar 

  25. S. Flint, T. Markle, S. Thompson, and E. Wallace, J. Environ. Manage., 104, 19 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. S. Q. Ma, D. C. Webster, and F. Jabeen, Macromolecules, 49, 3780 (2016).

    Article  CAS  Google Scholar 

  27. L. P. Chen, A. F. Yee, J. M. Goetz, and J. Schaefer, Macromolecules, 31, 5371 (1998).

    Article  CAS  Google Scholar 

  28. L. P. Chen, A. F. Yee, and E. J. Moskala, Macromolecules, 32, 5944 (1999).

    Article  CAS  Google Scholar 

  29. X. Y. Li and A. F. Yee, Macromolecules, 37, 7231 (2004).

    Article  CAS  Google Scholar 

  30. J. W. Liu and A. F. Yee, Macromolecules, 31, 7865 (1998).

    Article  CAS  Google Scholar 

  31. J. Karger-Kocsis, O. Gryshchuk, and N. Jost, J. Appl. Polym. Sci., 88, 2124 (2003).

    Article  CAS  Google Scholar 

  32. K. Wei, G. Zhu, Y. Tang, T. Liu, and J. Xie, J. Mater. Res., 28, 2903 (2013).

    Article  CAS  Google Scholar 

  33. K. Wei, G. Zhu, Y. Tang, and L. Niu, J. Polym. Res., 20, 1 (2013).

    Google Scholar 

  34. K. Wei, G. Zhu, Y. Tang, G. Tian, and J. Xie, Smart Mater. Struct., 21, 055022 (2012).

    Article  CAS  Google Scholar 

  35. B. Ma, X. Zhou, K. Wei, Y. Bo, and Z. You, Appl. Sci., 7, 523 (2017).

    Article  Google Scholar 

  36. T. T. Li, X. Q. Liu, Y. H. Jiang, S. Q. Ma, and J. Zhu, Iran. Polym. J., 25, 957 (2016).

    Article  CAS  Google Scholar 

  37. C. N. C. D. Rosu, F. Mustata, and C. Ciobanu, Thermochim. Acta, 383, 119 (2002).

    Article  CAS  Google Scholar 

  38. H. Cai, P. Li, G. Sui, Y. Yu, G. Li, X. Yang, and S. Ryu, Thermochim. Acta, 473, 101 (2008).

    Article  CAS  Google Scholar 

  39. C. Wang and C. Lin, J. Appl. Polym. Sci., 74, 1635 (1999).

    Article  CAS  Google Scholar 

  40. Q. Wang and W. Shi, Polym. Degrad. Stab., 91, 1747 (2006).

    Article  CAS  Google Scholar 

  41. K. O. H. Tobushi and T. Hashimoto, Mech. Mater., 33, 545 (2001).

    Article  Google Scholar 

  42. Y. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, and J. Diani, Int. J. Plast., 22, 279 (2006).

    Article  CAS  Google Scholar 

  43. E. R. Abrahamson, M. S. Lake, N. A. Munshi, and K. Gall, J. Intell. Mater. Syst. Struct., 14, 623 (2003).

    Article  CAS  Google Scholar 

  44. S. Q. Ma and D. C. Webster, Macromolecules, 48, 7127 (2015).

    Article  CAS  Google Scholar 

  45. Y.-C. Chiu, I. C. Chou, W.-C. Tseng, and C.-C. M. Ma, Polym. Degrad. Stab., 93, 668 (2008).

    Article  CAS  Google Scholar 

  46. S. Ma, W. Liu, C. Hu, Z. Wang, and C. Tang, Macromol. Res., 18, 392 (2010).

    Article  CAS  Google Scholar 

  47. W. Liu, S. Ma, Z. Wang, C. Hu, and C. Tang, Macromol. Res., 18, 853 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songqi Ma or Jin Zhu.

Additional information

Acknowledgments: The authors are grateful for the financial support from Projects 51473180, 51773216 supported by the National Natural Science Foundation of China, and Chinese MIIT Special Research Plan on Civil Aircraft, grant No. MJ-2015-H-G-103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Ma, S., Yue, H. et al. Comparison of Hydrogenated Bisphenol A and Bisphenol A Epoxies: Curing Behavior, Thermal and Mechanical Properties, Shape Memory Properties. Macromol. Res. 26, 529–538 (2018). https://doi.org/10.1007/s13233-018-6075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6075-3

Keywords

Navigation