Macromolecular Research

, Volume 26, Issue 6, pp 529–538 | Cite as

Comparison of Hydrogenated Bisphenol A and Bisphenol A Epoxies: Curing Behavior, Thermal and Mechanical Properties, Shape Memory Properties

  • Jingjing Wei
  • Songqi Ma
  • Hong Yue
  • Sheng Wang
  • Jin Zhu


Hydrogenated bisphenol A epoxy resin was cured using different kind of curing agents, resulting in epoxy networks with better shape memory properties than bisphenol A epoxy networks. The non-isothermal curing kinetics investigated by differential scanning calorimetry (DSC) demonstrated that hydrogenated bisphenol A epoxy showed lower curing reactivity than bisphenol A epoxy, while it still could be cured well. The thermal and mechanical properties as well as shape memory properties were studied by dynamic mechanical analysis (DMA), DSC, thermogravimetric analysis (TGA), three-point bending test and U-type shape memory test and cyclic stretch test using DMA. Results manifested that hydrogenated bisphenol A epoxy systems exhibited lower shape transition temperature (lower T g ), slightly higher modulus, better toughness, much faster shape recovery rate, and better elongating ability at temperature above T g than bisphenol A epoxy systems, which was due to the rigidity of cyclohexane ring from its steric hindrance and favorable segmental mobility when absorbing external energy such as heating or bending. Moreover, the shape fixity and shape recovery ratio of all the samples were as high as 96.3~98.5% and 100% and their cycling stability during shape memory test was excellent. Although lower than bisphenol A epoxy networks, hydrogenated bisphenol A epoxy networks possessed high thermal stability with initial degradation temperature (Td5%) of >305 °C.


epoxy resins thermosets non-planar cyclic structure shape memory effects structure-property relationships 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Q. Zhao, H. J. Qi, and T. Xie, Prog Polym Sci., 49-50, 79 (2015).CrossRefGoogle Scholar
  2. (2).
    M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, Prog Polym Sci., 49-50, 3 (2015).CrossRefGoogle Scholar
  3. (3).
    Q. Zhao, W. Zou, Y. Luo, and T. Xie, Sci. Adv., 2, 11421 (2016).Google Scholar
  4. (4).
    Z. Pei, Y. Yang, Q. Chen, Y. Wei, and Y. Ji, Adv. Mater., 28, 156 (2016).CrossRefGoogle Scholar
  5. (5).
    Y. Yang, Z. Pei, Z. Li, Y. Wei, and Y. Ji, J. Am. Chem. Soc., 138, 2118 (2016).CrossRefGoogle Scholar
  6. (6).
    M. I. Lawton, K. R. Tillman, H. S. Mohammed, W. Kuang, D. A. Shipp, and P. T. Mather, ACS Macro Lett., 5, 203 (2016).CrossRefGoogle Scholar
  7. (7).
    R. R. Kohlmeyer, P. R. Buskohl, J. R. Deneault, M. F. Durstock, R. A. Vaia, and J. Chen, Adv. Mater., 26, 8114 (2014).CrossRefGoogle Scholar
  8. (8).
    D. Zhang, Q. Zhang, Y. Lu, J. Jiang, Y. Yao, S. Li, G. L. Liu, and Q. Liu, Nanomedicine, 12, 449 (2016).Google Scholar
  9. (9).
    Y. Zheng, R. Dong, J. Shen, and S. Guo, ACS. Appl. Mater., 8, 1371 (2016).CrossRefGoogle Scholar
  10. (10).
    Y. C. Chien, W. T. Chuang, U. S. Jeng, and S. H. Hsu, ACS. Appl. Mater., 9, 5419 (2017).CrossRefGoogle Scholar
  11. (11).
    N. Zheng, Z. Fang, W. Zou, Q. Zhao, and T. Xie, Angew Chem. Int. Ed., 55, 11421 (2016).CrossRefGoogle Scholar
  12. (12).
    A. Arnebold and A. Hartwig, Polymer, 83, 40 (2016).CrossRefGoogle Scholar
  13. (13).
    C. Li, J. Y. Dai, X. Q. Liu, Y. H. Jiang, S. Q. Ma, and J. Zhu, Macromol. Chem. Phys., 217, 1439 (2016).CrossRefGoogle Scholar
  14. (14).
    Z. Ma, Y. Wang, J. Zhu, J. Yu, and Z. Hu, J. Polym. Sci., Part A: Polym. Chem., 55, 1790 (2017).CrossRefGoogle Scholar
  15. (15).
    G. Zhang, Q. Zhao, L. Yang, W. Zou, X. Xi, and T. Xie, ACS Macro Lett., 5, 805 (2016).CrossRefGoogle Scholar
  16. (16).
    A. T. Detwiler and A. J. Lesser, J. Mater. Sci., 47, 3493 (2012).CrossRefGoogle Scholar
  17. (17).
    G. C. Psarras, J. Parthenios, and C. Galiotis, J. Mater. Sci., 36, 535 (2001).CrossRefGoogle Scholar
  18. (18).
    T. Xie and I. A. Rousseau, Polymer, 50, 1852 (2009).CrossRefGoogle Scholar
  19. (19).
    C. Liang, C. A. Rogers, and E. Malafeew, J. Intell. Mater. Syst. Struct., 8, 380 (1997).CrossRefGoogle Scholar
  20. (20).
    H. Sun, Y. Liu, H. Tan, and X. Du, J. Appl. Poly. Sci., 131, 39882 (2014).Google Scholar
  21. (21).
    Z. Wang, W. Song, L. Ke, and Y. Wang, Mater. Lett., 89, 216 (2012).CrossRefGoogle Scholar
  22. (22).
    M. Fan, J. Liu, X. Li, J. Zhang, and J. Cheng, J. Polym. Res., 21, 376 (2014).CrossRefGoogle Scholar
  23. (23).
    N. Zheng, G. Fang, Z. Cao, Q. Zhao, and T. Xie, Polym. Chem., 6, 3046 (2015).CrossRefGoogle Scholar
  24. (24).
    H. Meng and G. Li, Polymer, 54, 2199 (2013).CrossRefGoogle Scholar
  25. (25).
    S. Flint, T. Markle, S. Thompson, and E. Wallace, J. Environ. Manage., 104, 19 (2012).CrossRefGoogle Scholar
  26. (26).
    S. Q. Ma, D. C. Webster, and F. Jabeen, Macromolecules, 49, 3780 (2016).CrossRefGoogle Scholar
  27. (27).
    L. P. Chen, A. F. Yee, J. M. Goetz, and J. Schaefer, Macromolecules, 31, 5371 (1998).CrossRefGoogle Scholar
  28. (28).
    L. P. Chen, A. F. Yee, and E. J. Moskala, Macromolecules, 32, 5944 (1999).CrossRefGoogle Scholar
  29. (29).
    X. Y. Li and A. F. Yee, Macromolecules, 37, 7231 (2004).CrossRefGoogle Scholar
  30. (30).
    J. W. Liu and A. F. Yee, Macromolecules, 31, 7865 (1998).CrossRefGoogle Scholar
  31. (31).
    J. Karger-Kocsis, O. Gryshchuk, and N. Jost, J. Appl. Polym. Sci., 88, 2124 (2003).CrossRefGoogle Scholar
  32. (32).
    K. Wei, G. Zhu, Y. Tang, T. Liu, and J. Xie, J. Mater. Res., 28, 2903 (2013).CrossRefGoogle Scholar
  33. (33).
    K. Wei, G. Zhu, Y. Tang, and L. Niu, J. Polym. Res., 20, 1 (2013).Google Scholar
  34. (34).
    K. Wei, G. Zhu, Y. Tang, G. Tian, and J. Xie, Smart Mater. Struct., 21, 055022 (2012).CrossRefGoogle Scholar
  35. (35).
    B. Ma, X. Zhou, K. Wei, Y. Bo, and Z. You, Appl. Sci., 7, 523 (2017).CrossRefGoogle Scholar
  36. (36).
    T. T. Li, X. Q. Liu, Y. H. Jiang, S. Q. Ma, and J. Zhu, Iran. Polym. J., 25, 957 (2016).CrossRefGoogle Scholar
  37. (37).
    C. N. C. D. Rosu, F. Mustata, and C. Ciobanu, Thermochim. Acta, 383, 119 (2002).CrossRefGoogle Scholar
  38. (38).
    H. Cai, P. Li, G. Sui, Y. Yu, G. Li, X. Yang, and S. Ryu, Thermochim. Acta, 473, 101 (2008).CrossRefGoogle Scholar
  39. (39).
    C. Wang and C. Lin, J. Appl. Polym. Sci., 74, 1635 (1999).CrossRefGoogle Scholar
  40. (40).
    Q. Wang and W. Shi, Polym. Degrad. Stab., 91, 1747 (2006).CrossRefGoogle Scholar
  41. (41).
    K. O. H. Tobushi and T. Hashimoto, Mech. Mater., 33, 545 (2001).CrossRefGoogle Scholar
  42. (42).
    Y. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, and J. Diani, Int. J. Plast., 22, 279 (2006).CrossRefGoogle Scholar
  43. (43).
    E. R. Abrahamson, M. S. Lake, N. A. Munshi, and K. Gall, J. Intell. Mater. Syst. Struct., 14, 623 (2003).CrossRefGoogle Scholar
  44. (44).
    S. Q. Ma and D. C. Webster, Macromolecules, 48, 7127 (2015).CrossRefGoogle Scholar
  45. (45).
    Y.-C. Chiu, I. C. Chou, W.-C. Tseng, and C.-C. M. Ma, Polym. Degrad. Stab., 93, 668 (2008).CrossRefGoogle Scholar
  46. (46).
    S. Ma, W. Liu, C. Hu, Z. Wang, and C. Tang, Macromol. Res., 18, 392 (2010).CrossRefGoogle Scholar
  47. (47).
    W. Liu, S. Ma, Z. Wang, C. Hu, and C. Tang, Macromol. Res., 18, 853 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboP. R. China
  2. 2.School of ScienceNorthwestern Polytechnical UniversityXi’anP. R. China

Personalised recommendations