Chemically Robust Superhydrophobic Poly(vinylidene fluoride) Films with Grafting Crosslinkable Fluorinated Silane

  • Heejeong Jeong
  • Seolhee Baek
  • Singu Han
  • Hayeong Jang
  • Tonnah Kwesi Rockson
  • Hwa Sung Lee


A superhydrophobic surface with excellent chemical stability was fabricated using the spraying method, one of the most efficient technologies for producing large-area coatings at low cost. Poly(vinylidene fluoride) (PVDF) was used as a hydrophobic polymer material, and heptadecafluoro-1,1,2,2,-tetra-hydrodecyl)trichlorosilane (FTS), which reacts with moisture during curing, was used to improve the water repellency and durability. Spray coating of PVDF alone yielded PVDF nanostructures described by the Cassie-Baxter model. The water contact angle of a water droplet on this surface, however, was 128°, indicating that the surface was not superhydrophobic. On the other hand, spray-coating a mixed PVDF-FTS solution provided a complex and homogeneous nanostructured surface with excellent water repellency and a contact angle of up to 159°. Immersion of the PVDF-only film for 20 min in N,N-dimethylformamide (DMF), a good solvent for PVDF, led to complete dissolution of the film. By contrast, the PVDF-FTS film maintained its superhydrophobicity with a water contact angle of 151° after 20 min of immersion in DMF, and still exhibited a high contact angle of 142° after 1 h. The PVDF-FTS film developed in the present work should enable the production of large-area superhydrophobic coatings at low cost using a simple spray process. Moreover, the PVDF-FTS film displayed excellent stability against solvents, thus increasing its suitability for robust superhydrophobic applications.


superhydrophobicity poly(vinyliden fluoride) fluorinated silane chemical robustness spray coating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    W.-L. Min, B. Jiang, and P. Jiang, Adv. Mater., 20, 3914 (2008).CrossRefGoogle Scholar
  2. (2).
    K. Liu, X. Yao, and L. Jiang, Chem. Soc. Rev., 39, 3240 (2010).CrossRefGoogle Scholar
  3. (3).
    J. Li, L. Yan, Q. Ouyang, F. Zha, Z. Jing, X. Li, and Z. Lei, Chem. Eng. J., 246, 238 (2014).CrossRefGoogle Scholar
  4. (4).
    Y. Wang, J. Xue, Q. Wang, Q. Chen, and J. Ding, ACS Appl. Mater. Interfaces, 5, 3370 (2013).CrossRefGoogle Scholar
  5. (5).
    S. Zhang, F. Lu, L. Tao, N. Liu, C. Gao, L. Feng, and Y. Wei, ACS Appl. Mater. Interfaces, 5, 11971 (2013).CrossRefGoogle Scholar
  6. (6).
    X. Feng and L. Jiang, Adv. Mater., 18, 3063 (2006).CrossRefGoogle Scholar
  7. (7).
    J. Ou, W. Hu, S. Liu, M. Xue, F. Wang, and W. Li, ACS Appl. Mater. Interfaces, 5, 3101 (2013).CrossRefGoogle Scholar
  8. (8).
    H. Ogihara, J. Xie, J. Okagaki, and T. Saji, Langmuir, 28, 4605 (2012).CrossRefGoogle Scholar
  9. (9).
    Z. Guo, W. Liu, and B.-L. Su, J. Colloid Interface Sci., 353, 335 (2011).CrossRefGoogle Scholar
  10. (10).
    G. Mao-Gang, X. Xiao-Liang, Y. Zhou, L. Yan-Song, and L. Ling, Chin. Phys. B, 19, 056701 (2010).CrossRefGoogle Scholar
  11. (11).
    D.-H. Kim, Y. Kim, B. M. Kim, J. S. Ko, C.-R. Cho, and J.-M. Kim, J. Micromech. Microeng., 21, 045003 (2011).CrossRefGoogle Scholar
  12. (12).
    T.-Y. Kim, B. Ingmar, K. Bewilogua, K. H. Oh, K.-R. Lee, Chem. Phys. Lett., 436, 199 (2007).CrossRefGoogle Scholar
  13. (13).
    W. Ming, D. Wu, R. V. Benthem, and G. D. With, Nano Lett., 5, 2298 (2005).CrossRefGoogle Scholar
  14. (14).
    D. Kim, J. Kim, H. C. Park, K.-H. Lee, and W. Hwang, J. Micromech. Microeng., 18, 015019 (2008).CrossRefGoogle Scholar
  15. (15).
    R. N. Wenzel, Ind. Eng. Chem., 28, 988 (1936).CrossRefGoogle Scholar
  16. (16).
    L. Cao, H.-H. Hu, and D. Gao, Langmuir, 23, 4310 (2007).CrossRefGoogle Scholar
  17. (17).
    A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40, 546 (1944).CrossRefGoogle Scholar
  18. (18).
    A. Marmur and E. Bittoun, Langmuir, 25, 1277 (2009).CrossRefGoogle Scholar
  19. (19).
    M. Ma, M. Gupta, Z. Li, L. Zhai, K. K. Gleason, R. E. Cohen, M. F. Rubner, and G. C. Rutledge, Adv. Mater., 19, 255 (2007).CrossRefGoogle Scholar
  20. (20).
    D. Han and A. J. Steckl, Langmuir, 25, 9454 (2009).CrossRefGoogle Scholar
  21. (21).
    Y. Zhao, Z. Xu, X. Wang, and T. Lin, Appl. Surface Sci., 286, 364 (2013).CrossRefGoogle Scholar
  22. (22).
    K. Manabe, K. Manabe, S. Nishizawa, K.-H. Kyung, and S. Shiratori, ACS Appl. Mater. Interfaces, 6, 13985 (2014).CrossRefGoogle Scholar
  23. (23).
    Y. H. Sung, Y. D. Kim, H.-J. Choi, R. Shin, S. Kang, and H. Lee, Appl. Surface Sci., 349, 169 (2015).CrossRefGoogle Scholar
  24. (24).
    T. Li, M. Paliy, X. Wang, B. Kobe, W.-M. Lau, and J. Yang, ACS Appl. Mater. Interfaces, 7, 10988 (2015).CrossRefGoogle Scholar
  25. (25).
    N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, S. Momota, J. Taniguchi, and I. Miyamoto, Appl. Surface Sci., 253, 3284 (2007).CrossRefGoogle Scholar
  26. (26).
    N. Miljkovic, R. Enright, and E. N. Wang, ACS Nano, 6, 1776 (2012).CrossRefGoogle Scholar
  27. (27).
    N. A. Azarova, J. W. Owen, C. A. McLellan, M. A. Grimminger, Eric. K. Chapman, J. E. Anthony, and O. D. Jurchescu, Org. Electron., 11, 1960 (2010).CrossRefGoogle Scholar
  28. (28).
    D. Vak, S.-S. Kim, J. Jo, S.-H. Oh, S.-I. Na, J. Kim, and D.-Y. Kim, Appl. Phys. Lett., 91, 081 (2007).CrossRefGoogle Scholar
  29. (29).
    Y. Zhang, D. Ge, and S. Yang, J. Colloid Interface Sci., 423, 101 (2014).CrossRefGoogle Scholar
  30. (30).
    J. Li, R. Wu, Z. Jing, L. Yan, F. Zhan, and Z. Lei, Langmuir, 31, 10702 (2015).CrossRefGoogle Scholar
  31. (31).
    Y. Li, S. Chen, M. Wu, and J. Sun, Adv. Mater., 26, 3344 (2014).CrossRefGoogle Scholar
  32. (32).
    P. A. Levkin, F. Svec, and J. M. J. Fréchet, Adv. Funct. Mater., 19, 1993 (2009).CrossRefGoogle Scholar
  33. (33).
    D. L. Gilmore, R. C. Dykhuizen, R. A. Neiser, T. J. Roemer, and M. F. Smith, J. Therm. Spray Technol., 8, 576 (1999).CrossRefGoogle Scholar
  34. (34).
    T. Stoltenhoff, H. Kreye, and H. J. Richter, J. Therm. Spray Technol., 11, 542 (2002).CrossRefGoogle Scholar
  35. (35).
    L. Xu, R. G. Karunakaran, J. Guo, and S. Yang, ACS Appl. Mater. Interfaces, 4, 1118 (2012).CrossRefGoogle Scholar
  36. (36).
    M. G. Hankins, P. J. Resnick, P. J. Clews, T. M. Mayer, D. R. Wheeler, D. M. Tanner, and R. A. Plass, Proc. SPIE, 4980, 238.Google Scholar
  37. (37).
    R. W. P. Fairbank and M. J. Wirth, J. Chromatogr. A, 830, 285 (1999).CrossRefGoogle Scholar
  38. (38).
    S. Park, K.-S. Lee, G. Bozoklu, W. Cal, S. T. Nguyen, and R. S. Ruoff, ACS Nano, 2, 572 (2008).CrossRefGoogle Scholar
  39. (39).
    P. Xu, H. Tang, S. Li, J. Ren, E. V. Kirk, W. J. Murdoch, M. Radosz, and Y. Shen, Biomacromolecules, 5, 1736 (2004).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Heejeong Jeong
    • 1
  • Seolhee Baek
    • 1
  • Singu Han
    • 1
  • Hayeong Jang
    • 1
  • Tonnah Kwesi Rockson
    • 1
  • Hwa Sung Lee
    • 1
  1. 1.Department of Chemical & Biological EngineeringHanbat National UniversityDaejeonKorea

Personalised recommendations