Macromolecular Research

, Volume 26, Issue 5, pp 446–453 | Cite as

Effect of Mercapto-Terminated Silane Treatment on Rheological and Mechanical Properties of Rice Bran Carbon-Reinforced Nitrile Butadiene Rubber Composites

  • Yinhang Zhang
  • Soo-Jin Park


This paper aims at correlating the silane treatment of rice bran carbon (RBC) in nitrile butadiene rubber (NBR) matrix with the rheological properties of RBC/NBR composites. The surface morphology and structure of RBC were characterized by X-ray diffraction, thermogravimetric analysis, high-resolution scanning electron microscopy (HR-SEM), Raman spectroscopy, and adsorption analysis. The RBC/NBR polymer-matrix composites were fabricated by using the latex compounding technique, based on the superior hydrophilic characteristics of RBC. The silane treatment process was conducted by in situ interfacial modification technique. The dispersion of RBC and the interfacial morphologies between the RBC and NBR matrix were confirmed by HR-SEM. The bonding mechanism was analyzed in detail by mechanical and dynamic rheological determinations. At the same filler concentration, the (3-mercaptopropyl) trimethoxysilane (MPTMS) treated composites exhibited stronger mechanical properties and higher storage modulus than original RBC/NBR composite, as the interfacial interaction via MPTMS connected RBC and NBR molecules was stronger than the interaction in RBC/NBR composites connected by hydrogen bonds and weaker π-π stacking.


polymer-matrix composites (PMCs) mechanical poperties rheological properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6058_MOESM1_ESM.pdf (439 kb)
Supporting Information


  1. (1).
    A. Zhang, R. Bian, G. Pan, L. Cui, Q. Hussain, L. Li, J. Zheng, J. Zheng, X. Zhang, X. Han, and X. Yu, Field Crop. Res., 127, 153 (2012).CrossRefGoogle Scholar
  2. (2).
    J. S. Cha, S. H. Park, S. C. Jung, C. Ryu, J. K. Jeon, M. C. Shin, and Y. K. Park, J. Ind. Eng. Chem., 50, 1 (2016).CrossRefGoogle Scholar
  3. (3).
    D. Mohan, S. Rajput, V. K. Singh, P. H. Steele, and C. U. Pittman, J. Hazard. Mater., 188, 319 (2011).CrossRefGoogle Scholar
  4. (4).
    T. M. Abdel-Fattah, M. E. Mahmoud, S. B. Ahmed, M. D. Huff, J. W. Lee, and S. Kumar, J. Ind. Eng. Chem., 22, 103 (2015).CrossRefGoogle Scholar
  5. (5).
    K. Karhu, T. Mattila, I. Bergström, and K. Regina, Agric. Ecosyst. Envi- ron., 140, 309 (2011).CrossRefGoogle Scholar
  6. (6).
    S. C. Peterson, J. Elastomers Plast., 45, 487 (2012).CrossRefGoogle Scholar
  7. (7).
    O. Das, A. K. Sarmah, and D. Bhattacharyya, Waste Manag., 38, 132 (2015).CrossRefGoogle Scholar
  8. (8).
    S. C. Peterson, J. Elastomers Plast., 44, 43 (2012).CrossRefGoogle Scholar
  9. (9).
    Y. Zhang, X. Ge, F. Deng, M. C. Li, and U. R. Cho, Polym. Compos., 38, 2594 (2017).CrossRefGoogle Scholar
  10. (10).
    Y. Zhang, D. Fei, G. Xin, and U. R. Cho, J. Compos. Mater., 50, 2987 (2015).CrossRefGoogle Scholar
  11. (11).
    Y. Zhang, X. Li, X. Ge, F. Deng, and U. R. Cho, Macromol. Res., 23, 952 (2015).CrossRefGoogle Scholar
  12. (12).
    N. Suzuki, M. Ito, and F. Yatsuyanagi, Polymer (Guildf)., 46, 193 (2005).CrossRefGoogle Scholar
  13. (13).
    Y. Zhang, K. Y. Rhee, and S. Park, Compos. Part B: Eng., 114, 111 (2017).CrossRefGoogle Scholar
  14. (14).
    S. J. Park, K. S. Cho, and S. K. Ryu, Carbon N. Y., 41, 1437 (2003).CrossRefGoogle Scholar
  15. (15).
    R. N. Mahaling, G. K. Jana, C. K. Das, H. Jeong, and C. S. Ha, Macromol. Res., 13, 306 (2005).CrossRefGoogle Scholar
  16. (16).
    G. Akovali and I. Ulkem, Polymer (Guildf)., 40, 7417 (1999).CrossRefGoogle Scholar
  17. (17).
    M. T. Kim, K. Y. Rhee, S. J. Park, and D. Hui, Compos. Part B: Eng., 43, 2298 (2012).CrossRefGoogle Scholar
  18. (18).
    B. Chen, X. Li, J. Yang, H. Huang, W. Peng, C. Li, and Z. Zhang, RSC Adv., 6, 49387 (2016).CrossRefGoogle Scholar
  19. (19).
    X. Jiang, Y. Bin, and M. Matsuo, Polymer (Guildf)., 46, 7418 (2005).CrossRefGoogle Scholar
  20. (20).
    N. Yousefi, X. Lin, Q. Zheng, X. Shen, J. R. Pothnis, J. Jia, E. Zussman, and J.-K. Kim, Carbon N. Y., 59, 406 (2013).CrossRefGoogle Scholar
  21. (21).
    K. S. Kim, K. Y. Rhee, K. H. Lee, J. H. Byun, and S. J. Park, J. Ind. Eng. Chem., 16, 572 (2010).CrossRefGoogle Scholar
  22. (22).
    Z. Peng, C. Feng, Y. Luo, Y. Li, and L. X. Kong, Carbon N. Y., 48, 4497 (2010).CrossRefGoogle Scholar
  23. (23).
    K. S. Kim and S. J. Par. Macromol. Res., 138, 981 (2010).CrossRefGoogle Scholar
  24. (24).
    M. E. Uddin, R. K. Layek, H. Y. Kim, N. H. Kim, D. Hui, and J. H. Lee, Compos. Part B: Eng., 90, 223 (2016).CrossRefGoogle Scholar
  25. (25).
    H. Lu, Y. Yao, W. M. Huang, and D. Hui, Compos. Part B: Eng., 67, 290 (2014).CrossRefGoogle Scholar
  26. (26).
    F. L. Jin, K. Y. Rhee, and S. J. Park, J. Solid State Chem., 184, 3253 (2011).CrossRefGoogle Scholar
  27. (27).
    V. Dhand, K. Y. Rhee, H. J. Kim, and D. H. Jung, J. Nanomater., DOI:10.1155/2013/763953.Google Scholar
  28. (28).
    B. Chen, X. Li, X. Li, J. Yang, W. Peng, J. Dong, C. Li, and H. Song, RSC Adv., 6, 60446 (2016).CrossRefGoogle Scholar
  29. (29).
    H. H. Le, X. T. Hoang, A. Das, U. Gohs, K. W. Stoeckelhuber, R. Boldt, G. Heinrich, R. Adhikari, and H. J. Radusch, Carbon N. Y., 50, 4543 (2012).CrossRefGoogle Scholar
  30. (30).
    C. Nah, J. Y. Lim, B. H. Cho, C. K. Hong, and A. N. Gent, J. Appl. Polym. Sci., 118, 1574 (2010).Google Scholar
  31. (31).
    S. S. Choi, Polym. Adv. Technol., 13, 466 (2002).CrossRefGoogle Scholar
  32. (32).
    T. R. Society, Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci., 240, 459 (1948).CrossRefGoogle Scholar
  33. (33).
    C. O. Horgan and G. Saccomandi, J. Elast., 68, 167 (2002).CrossRefGoogle Scholar
  34. (34).
    K. Subramaniam, A. Das, and G. Heinrich, Compos. Sci. Technol., 71, 1441 (2011).CrossRefGoogle Scholar
  35. (35).
    M.-C. Li, Y. Zhang, and U. R. Cho, Mater. Des., 63, 565 (2014).CrossRefGoogle Scholar
  36. (36).
    T. W. Kim and S. J. Park, J. Colloid Interface Sci., 486, 287 (2017).CrossRefGoogle Scholar
  37. (37).
    G. Mittal, K. Y. Rhee, S. J. Park, and D. Hui, Compos. Part B Eng., 114, 348 (2017).CrossRefGoogle Scholar
  38. (38).
    W. Xiong, G. Yang, T. H. Yang, S. Liu, and Y. Jung, Bull. Korean Chem. Soc., 38, 350 (2017).CrossRefGoogle Scholar
  39. (39).
    L. Bokobza, Express Polym. Lett., 6, 601 (2012).CrossRefGoogle Scholar
  40. (40).
    A. C. Ferrari, Solid State Commun., 143, 47 (2007).CrossRefGoogle Scholar
  41. (41).
    Z. Tang, X. Wu, B. Guo, L. Zhang, and D. Jia, J. Mater. Chem., 22, 7492 (2012).CrossRefGoogle Scholar
  42. (42).
    Z. Tang, Q. Wei, T. Lin, B. Guo, and D. Jia, RSC Adv., 3, 17057 (2013).CrossRefGoogle Scholar
  43. (43).
    L. Wang, N. Ning, L. Zhang, Y. Lu, M. Tian, and T. Chan, Compos. Part A Appl. Sci. Manuf., 47, 135 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryInha UniversityIncheonKorea

Personalised recommendations