Macromolecular Research

, Volume 26, Issue 5, pp 403–409 | Cite as

Mechano-Chemical Modification of Waste Rubber Powder with 2-Mercatobenzothiozole and 3-Aminopropyltriethoxysilane

  • Xiaoping Wang
  • Jianghua Du
  • Xin Zhang
  • Deming Jia


A mechano-chemical modification process for waste rubber powder (WRP) was investigated in this paper. 2-Mercatobenzothiozole (accelerator M) was introduced as a peptizer to improve plasticity of WRP, and 3-aminopropyltriethoxysilane (silane coupling agent KH550) was used as a surfactant to further modify the surface of plasticized rubber powder (PRP) to improve interfacial bonding with epoxidized natural rubber (ENR). Infrared spectrums showed that the WRP generated more oxygen-containing groups by mechanical forces in the presence of accelerator M and then grafted amino groups with KH550. The mechano-chemical process with accelerator M changed the structure of WRP obviously shown by sol fraction and microstructure of PRP, which increased the mechanical properties and crosslink density of full rubber powder vulcanizates. After further modified by KH550, the modified rubber powder (MRP) had a positive chemical interfacial bonding with ENR, changing the fracture surface and improving the mechanical properties of vulcanizates. The cure characteristics of the vulcanizates also illustrated that accelerator M and KH550 participated in the vulcanization process increasing the curing efficiency. The best mechanical properties of ENR/MRP vulcanizates were better than the neat ENR vulcanizates. It indicated that the mechano-chemical process with accelerator M and KH550 will be a potential method to reclaim WRP.


waste rubber powder mechano-chemical modification 2-mercatobenzothiozole 3-aminopropyltriethoxysilane epoxidized natural rubber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    K. Bredberg, M. Christiansson, M. Bellander, B. Stenberg, and O. Holst, Prog. Rubb. Plast. Technol., 17, 149 (2001).Google Scholar
  2. (2).
    B. Adhikari, D. De, and S. Maiti, Prog. Polym. Sci., 25, 909 (2000).CrossRefGoogle Scholar
  3. (3).
    S. Rooj, G. C. Basak, P. K. Maji, and A. K. Bhowmick, J. Polym. Environ., 19, 382 (2011).CrossRefGoogle Scholar
  4. (4).
    K. Formela, M. Klein, X. Colom, and M. R. Saeb, Polym. Degrad. Stab., 125, 1 (2016).CrossRefGoogle Scholar
  5. (5).
    G. K. Jana and C. K. Das, Macromol. Res., 13, 30 (2005).CrossRefGoogle Scholar
  6. (6).
    K. C. Ondoy and B. B. Pajarito, Mater. Sci. Forum, 890, 64 (2017).CrossRefGoogle Scholar
  7. (7).
    Z. Wang, Y. Kang, Z. Wang, and Y. Cheng, J. Polym. Eng., 37 (2017).Google Scholar
  8. (8).
    S. O. Movahed, A. Ansarifar, S. Karbalaee, and S. A. Far, Prog. Rubb. Plast. Re. Technol., 31, 87 (2015).Google Scholar
  9. (9).
    P. Valasek and M. Muller, Eng. Rural Dev., 13, 396 (2014).Google Scholar
  10. (10).
    J. Datta and M. Włoch, Macromol. Res., 23, 1117 (2015).CrossRefGoogle Scholar
  11. (11).
    J. I. Kim, S. H. Ryu, and Y. W. Chang, J. Appl. Polym. Sci., 77, 2595 (2015).CrossRefGoogle Scholar
  12. (12).
    A. M. Shanmugharaj, J. K. Kim, and S. H. Ryu, J. Appl. Polym. Sci., 104, 2237 (2007).CrossRefGoogle Scholar
  13. (13).
    B. Sun, Z. Du, H. Cao, L. Du, and W. Yu, J. Appl. Polym. Sci., 134, 45438 (2017).CrossRefGoogle Scholar
  14. (14).
    M. Li, W. Zhu, Y. Xu, M. Fu, and Y. Cao, J. Vinyl Addit. Technol., 20, 225 (2015).CrossRefGoogle Scholar
  15. (15).
    D. Kim, G. Kim, J. Bae, S. Oh, E. Park, and I. Chung, Macromol. Res., 24, 261 (2016).CrossRefGoogle Scholar
  16. (16).
    X. Z. Zhen, S. H. Lee, K. K. Jin, L. Z. Shu, and X. X. Zhen, Macromol. Res., 16, 404 (2008).CrossRefGoogle Scholar
  17. (17).
    P. Nuntahirun, O. Yamamoto, and P. Paoprasert, Macromol. Res., 24, 1 (2016).CrossRefGoogle Scholar
  18. (18).
    S. Lu, Y. Song, L. Zhang, S. Dong, and Y. Li, China Synth. Rubb. Ind., 29, 245 (2006).Google Scholar
  19. (19).
    F. Karabork and A. Akdemir, J. Appl. Polym. Sci., 132, 42419 (2015).CrossRefGoogle Scholar
  20. (20).
    F. Karabork, E. Pehlivan, and A. Akdemir, J. Polym. Eng., 34, 543 (2014).CrossRefGoogle Scholar
  21. (21).
    K. Aoudia, S. Azem, H. N. Aït, M. Gratton, and V. Pettarin, Waste Manag., 60, 471 (2017).CrossRefGoogle Scholar
  22. (22).
    F. D. B. D. Sousa, C. H. Scuracchio, G. H. Hu, and S. Hoppe, Polym. Degrad. Stab., 138, 169 (2017).CrossRefGoogle Scholar
  23. (23).
    T. Yasina, S. Khana, M. Shafiqa, and R. Gillb, Radiat. Phys. Chem., 106, 343 (2015).CrossRefGoogle Scholar
  24. (24).
    M. Hu, S. Zhao, C. Li, B. Wang, and C. Yao, Polym. Degrad. Stab., 107, 91 (2014).CrossRefGoogle Scholar
  25. (25).
    M. D. Chengalroyen and E. R. Dabbs, J. Polym. Environ., 21, 874 (2013).CrossRefGoogle Scholar
  26. (26).
    H. R. Ong, M. R. Khan, A. Yousuf, N. Jeyaratnam, and D. M. R. Prasad, Pol. J. Chem. Tech., 17, 41 (2015).CrossRefGoogle Scholar
  27. (27).
    S. Jiang and L. M. Ji, J. Compos. Mater., 50 (2016).Google Scholar
  28. (28).
    J. Y. An, J. M. Park, D. Bang, B. S. Kim, and M. H. Oh, J. Korean Inst. Resour. Recy., 24, 59 (2015).Google Scholar
  29. (29).
    P. Thaicharoen, P. Thamyongkit, and S. Poompradub, Korean. J. Chem. Eng., 27, 1177 (2010).CrossRefGoogle Scholar
  30. (30).
    M. N. Alam, S. K. Mandal, and S. C. Debnath, Rubb. Chem. Technol., 85, 120 (2012).CrossRefGoogle Scholar
  31. (31).
    B. Arkles, Chemtech, 7, 766 (1977).Google Scholar
  32. (32).
    H. X. Du, Chem. Adhes., 35, 63 (2013).Google Scholar
  33. (33).
    P. J. Flory and J. Rehner, J. Chem. Phys., 11, 521 (1943).CrossRefGoogle Scholar
  34. (34).
    M. Lay, A. A. Rashid, N. Othman, Y. Tezuka, and C. Pen, Adv. Mater. Res., 858, 24 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Xiaoping Wang
    • 1
    • 2
  • Jianghua Du
    • 1
    • 2
  • Xin Zhang
    • 1
    • 2
  • Deming Jia
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouP. R. China
  2. 2.Guangdong Key Lab for High-performance and Functional Polymer MaterialsGuangzhouP. R. China

Personalised recommendations