Synthesis of Metallocene Catalyzed Ethylene 1,7-Octadiene Copolymer: Effect of Copolymerization on Polymer Properties

  • Mostafizur Rahaman
  • Ibnelwaleed Ali Hussein
  • Ali Aldalbahi
  • Anwar Parvez
  • Joao B. P. Soares
Article
  • 22 Downloads

Abstract

In this article, metallocene catalyzed polyethylene homopolymer and ethylene 1,7-octadiene copolymers were synthesized and the produced polymers were characterized. The results show that these polymers were high density polyethylene. The effect of comonomer 1,7-octadiene on thermal, mechanical, and rheological properties of the polymers was investigated. The molecular weight, melting temperature (T m ), d-spacing, crystallite size, and % crystallinity (% X c ) decrease with the increase in comonomer content. Polyethylene homopolymer and copolymer exhibit cold drawing processes. The tensile stress-strain plots show multiple necks. A reduction in tensile modulus, strength, and strain at break is seen for copolymers compared to homopolymer. The effect of comonomer content on dynamic and extensional rheology of the polymers was also studied. In addition, Direct Current conductivity and dielectric property of the polymers were also reported. The results were interpreted in terms of mainly polymer type, molecular weight, and crystallinity.

Keywords

ethylene 1,7-octadiene copolymer DSC tensile properties rheology XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. Cossee, J. Catal., 3, 80 (1964).CrossRefGoogle Scholar
  2. (2).
    E. Magni and G. A. Somorjai, Catal. Lett., 35, 205 (1995).CrossRefGoogle Scholar
  3. (3).
    M. I. Nikolaeva, T. B. Mikenas, M. A. Matsko, L. G. Echevskaya, and V. A. Zakharov, J. Appl. Polym. Sci., 122, 3092 (2011).CrossRefGoogle Scholar
  4. (4).
    D. Yan, W. J. Wang, and S. Zhu, Polymer, 40, 1737 (1999).CrossRefGoogle Scholar
  5. (5).
    K. Nomura, J. Liu, M. and Fujiki, A. Takemoto, J. Am. Chem. Soc., 129, 14170 (2007).CrossRefGoogle Scholar
  6. (6).
    H. Jiang, J. Lu, and J. Xiao, e-Polymers, 11, 454 (2011).CrossRefGoogle Scholar
  7. (7).
    M. A. Parvez, M. Rahaman, M. A. Suleiman, J. B. P. Soares, and I. A. Hussein, Int. J. Polym. Sci., 2014, 549031 (2014).CrossRefGoogle Scholar
  8. (8).
    M. A. Parvez, M. Rahaman, J. B. P. Soares, I. A. Hussein, and M. A. Suleiman, Polym. Sci. Ser. B, 56, 707 (2014).CrossRefGoogle Scholar
  9. (9).
    M. Rahaman, M. A. Parvez, J. B. P. Soares, and I. A. Hussein, Int. J. Polym. Sci., 2014, 654260 (2014).CrossRefGoogle Scholar
  10. (10).
    A. G. Simanke, G. B. Galland, L. Freitas, J. Alziro, H. D. Jornada, R. Quijada, and R. S. Mauler, Polymer, 40, 5489 (1999).CrossRefGoogle Scholar
  11. (11).
    S. Bensason, J. Minick, A. Moet, S. Chum, A. Hiltner, and E. Baer, J. Polym. Sci., Part B: Polym. Phys., 34, 1301 (1996).CrossRefGoogle Scholar
  12. (12).
    V. B. F. Mathot, R. L. Scherrenberg, and T. F. J. Pijpers, Polymer, 39, 4541 (1998).CrossRefGoogle Scholar
  13. (13).
    R. Benavente, E. Pérez, and R. Quijada, J. Polym. Sci., Part B: Polym. Phys., 39, 277 (2001).CrossRefGoogle Scholar
  14. (14).
    N. Naga and Y. Imanishi, Macromol. Chem. Phys., 203, 2155 (2002).CrossRefGoogle Scholar
  15. (15).
    M. F. V. Marques, F. C. Rocha, and N. J. Soto, Z. Naturforsch. B, 61, 1426 (2006).Google Scholar
  16. (16).
    P. Pietikäinen, J. V. Seppälä, L. Ahjopalo, and L. O. Pietilä, Eur. Polym. J., 36, 183 (2000).CrossRefGoogle Scholar
  17. (17).
    E. S. Park, J. Appl. Polym. Sci., 109, 3631 (2008).CrossRefGoogle Scholar
  18. (18).
    Z. Grubisic, P. Remmp, and H. Benoit, J. Polym. Sci., Part B: Polym. Phys., 5, 753 (1967).CrossRefGoogle Scholar
  19. (19).
    B. Wunderlich, J. Therm. Anal., 48, 207 (1997).CrossRefGoogle Scholar
  20. (20).
    M. I. Nikolaeva, M. A. Matsko, T. B. Mikenas, L. G. Echevskaya, and V. A. Zakharov, J. Appl. Polym. Sci., 125, 2034 (2012).CrossRefGoogle Scholar
  21. (21).
    J. J. Linster and J. Meissner, Polym. Bull., 16, 187 (1986).CrossRefGoogle Scholar
  22. (22).
    D. M. Sarzotti, A. Narayan, P. M. Whitney, L. C. Simon, and J. B. P. Soares, Macromol. Mater. Eng., 290, 584 (2005).CrossRefGoogle Scholar
  23. (23).
    M. Białek and E. Bisz, J. Polym. Res., 20, 164 (2013).CrossRefGoogle Scholar
  24. (24).
    V. Busico, R. Cipullo, N. Friederichs, H. Linssen, A. Segre, V. V. A. Castelli, and G. V. Velden, Macromolecules, 38, 6988 (2005).CrossRefGoogle Scholar
  25. (25).
    R. J. Abraham, P. Leonard, and C. F. Tormena, Magn. Reson. Chem., 50, 305 (2012).CrossRefGoogle Scholar
  26. (26).
    K. B. Wiberg, The Chemistry of Cyclobutanes, Z. Rappoport and J. F. Liebman, Eds., John Wiley & Sons, Ltd, Chichester, 2005, Chap. 1.Google Scholar
  27. (27).
    Q. He, T. Yuan, J. Zhu, Z. Luo, N. Haldolaarachchige, L. Sun, A. Khasanov, Y. Li, D. P. Young, S. Wei, and Z. Guo, Polymer, 53, 3642 (2012).CrossRefGoogle Scholar
  28. (28).
    Y. Lei, Q. Wu, and C. M. Clemons, J. Appl. Polym. Sci., 103, 3056 (2007).CrossRefGoogle Scholar
  29. (29).
    W. Y. Jie and Y. W. Dong, Chin. Sci. Bull., 52, 736 (2007).CrossRefGoogle Scholar
  30. (30).
    S. D. Clas, R. D. Heyding, D. C. McFaddin, K. E. Russell, M. V. Scammell-Bullock, E. C. Kelusky, and D. St-Cyr, J. Polym. Sci., Part B: Polym. Phys., 26, 1271 (1988).CrossRefGoogle Scholar
  31. (31).
    J. Koivumäki, Polym. Bull., 34, 413 (1995).CrossRefGoogle Scholar
  32. (32).
    E. Pérez, R. Benavente, R. Quijada, A. Narváez, and G. B. Galland, J. Polym. Sci., Part B: Polym. Phys., 38, 1440 (2000).CrossRefGoogle Scholar
  33. (33).
    R. Quijada, A. Narváez, R. Rojas, F. M. Rabagliati, G. B. Galland, R. S. Mauler, R. Benavente, E. Pérez, J. M. Pereňa, and A. Bello, Macromol. Chem. Phys., 200, 1306 (1999).CrossRefGoogle Scholar
  34. (34).
    I. A. Hussein, Polym. Int., 53, 1327 (2004).CrossRefGoogle Scholar
  35. (35).
    R. Alamo, R. C. Domszy, and L. Mandelkern, J. Polym. Chem., 88, 6857 (1984).Google Scholar
  36. (36).
    V. Gaucher-Miri and R. Seguela, Macromolecules, 30, 1158 (1997).CrossRefGoogle Scholar
  37. (37).
    N. W. J. Brooks, R. A. Duckett, and I. M. Ward, J. Polym. Sci., Part B: Polym. Phys., 36, 2177 (1998).CrossRefGoogle Scholar
  38. (38).
    Q. Da-ping, F. Xin-gang, and W. Hai-hua, Chem. Res. Chin. Univ., 18, 52 (2002).Google Scholar
  39. (39).
    J. Sacristán, R. Benavente, J. M. Pereña, E. Pérez, A. Bello, R. Rojas, R. Quijada, and F. M. Rabagliati, J. Therm. Anal. Calorim., 58, 559 (1999).CrossRefGoogle Scholar
  40. (40).
    I. B. Kazatchkov, N. Bohnet, S. K. Goyal, and S. G. Hatzikiriakos, Polym. Eng. Sci., 39, 804 (1999).CrossRefGoogle Scholar
  41. (41).
    J. Cai, C. Liu, M. Cai, J. Zhu, F. Zuo, B. S. Hsiao, and R. A. Gross, Polymer, 51, 1088 (2010).CrossRefGoogle Scholar
  42. (42).
    Y. Ma, Y. Bi, X. Zhang, D. Wang, G. Dang, H. Zhou, and C. Chen, High Perform. Polym., 28, 1210 (2016).CrossRefGoogle Scholar
  43. (43).
    W.-J. Wang, Z. Ye, H. Fan, B.-G. Li, and S. Zhu, Polymer, 45, 5497 (2004).CrossRefGoogle Scholar
  44. (44).
    H. Fouad, A-HI. Mourad, and D. C. Barton, Polym. Test., 24, 549 (2005).CrossRefGoogle Scholar
  45. (45).
    N. L. Batista, P. Olivier, G. Bernhart, M. C. Rezende, and E. C. Botelho, Mater. Res., 19, 195 (2016).CrossRefGoogle Scholar
  46. (46).
    H. A. Khonakdar, J. Morshedian, U. Wagenknecht, and S. H. Jafari, Polymer, 44, 4301 (2003).CrossRefGoogle Scholar
  47. (47).
    A. Min Min, T. G. Chuah, and T. R. Chantara, Mater. Des., 29, 992 (2008).CrossRefGoogle Scholar
  48. (48).
    M. Rahaman, T. K. Chaki, and D. Khastgir, J. Mater. Sci., 48, 7466 (2013).CrossRefGoogle Scholar
  49. (49).
    M. Rahaman, T. K. Chaki, and D. Khastgir, J. Appl. Polym. Sci., 128, 161 (2013).CrossRefGoogle Scholar
  50. (50).
    R. Ram, M. Rahaman, and D. Khastgir, J. Appl. Polym. Sci., 131, 39866 (2014).CrossRefGoogle Scholar
  51. (51).
    M. Rahaman, T. K. Chaki, and D. Khastgir, Polym. Eng. Sci., 54, 1632 (2014).CrossRefGoogle Scholar
  52. (52).
    D. K. Mahla, M. Rahaman, and D. Khastgir, Polym. Compos., 36, 445 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mostafizur Rahaman
    • 1
  • Ibnelwaleed Ali Hussein
    • 2
  • Ali Aldalbahi
    • 1
  • Anwar Parvez
    • 3
  • Joao B. P. Soares
    • 4
  1. 1.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Gas Processing Center, College of EngineeringQatar UniversityDohaQatar
  3. 3.Department of Chemical EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  4. 4.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations