Macromolecular Research

, Volume 26, Issue 4, pp 388–393 | Cite as

High-Performance Printed Circuit Board Materials Based on Benzoxazine and Epoxy Blend System

  • Seon Ho Lee
  • Ki Seok Kim
  • Ji Hye Shim
  • Cheol-Hee Ahn


Epoxy resin has been used as an industrial printed circuit board (PCB) material based on its excellent mechanical strength and adhesion property to metal. Silica nanoparticle is employed as a component of hybrid matrix material with epoxy resin due to its superior electrical insulating properties. In this study, benzoxazine, which has attracted attention as a new generation of electrically insulating material and displays extraordinary thermal stability, was investigated as a candidate for PCB material. Benzoxazine and epoxy/silica nanoparticle hybrid films were prepared to achieve low dissipation factor and improved mechanical stability. Two types of benzoxazines, monobenzoxazine, and linear polybenzoxazine were investigated; for monobenzoxazine-based film, the blend with epoxy resin was required to improve physical property because monobenzoxazine film showed brittle nature which limited the application as a film with proper mechanical strength. Films with higher content of monobenzoxazine over epoxy resin resulted in lower dissipation factor around 0.005 frequency/10 GHz, however, the mechanical property of the film did not meet the condition as a PCB material. On the contrary, the linear polybenzoxazine-based film demonstrated enhanced mechanical stability but showed limitations in adhesion to the copper layer probably due to the lack of polar functional groups. To overcome the drawbacks, linear polybenzoxazine and epoxy blend systems were prepared to produce films with good adhesion and excellent electrical insulation property with the dissipation factor around 0.006 frequency/10 GHz.


printed circuit board (PCB) Benzoxazine epoxy hybrid film dissipation factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J.-Y. Shieh, H.-J. Hwang, S.-P. Yang, and C.-S. Wang, J. Polym. Sci., Part A: Polym. Chem., 43, 671 (2005).CrossRefGoogle Scholar
  2. (2).
    M. Lé-Magda, E. Dargent, J. A. S. Puente, A. Guillet, E. Font, and J.-M. Saiter, J. Appl. Polym. Sci., 130, 786 (2013).CrossRefGoogle Scholar
  3. (3).
    J. Li, H. Duan, K. Yu, and S. Wang, J. Air Waste Manag. Assoc., 60, 229 (2010).CrossRefGoogle Scholar
  4. (4).
    Z. Zhang, R. Yu, D. Wang, J. Wang, and Y. Jiao, J. Appl. Polym. Sci., 120, 3716 (2011).CrossRefGoogle Scholar
  5. (5).
    R.-H. Lin, W.-H. Lu, and C.-W. Lin, Polymer, 45, 4423 (2004).CrossRefGoogle Scholar
  6. (6).
    M. Laskoski, D. D. Dominguez, and T. M. Keller, J. Mater. Chem., 15, 1611 (2005).CrossRefGoogle Scholar
  7. (7).
    J. H. Wang, G. Z. Liang, H. X. Yan, and S. B. He, eXPRESS Polym. Lett., 2, 118 (2008).CrossRefGoogle Scholar
  8. (8).
    H.-J. Hwang, C.-H. Li, and C.-S. Wang, Polymer, 47, 1291 (2006).CrossRefGoogle Scholar
  9. (9).
    J.-J. Park, Trans. Electr. Electron. Mater., 13, 322 (2012).CrossRefGoogle Scholar
  10. (10).
    C. Yan, X. Fan, J. Li and S. Z. Shen, J. Appl. Polym. Sci., 120, 1525 (2011).CrossRefGoogle Scholar
  11. (11).
    W. Wu, J. Leng, Z. Wang, H. Qu, and J. Gao, Macromol. Res., 24, 209 (2016).CrossRefGoogle Scholar
  12. (12).
    F. W. Holly and A. C. Cope, J. Am. Chem. Soc., 66, 1875 (1944).CrossRefGoogle Scholar
  13. (13).
    X. Ning and H. Ishida, J. Polym. Sci., Part A: Polym. Chem., 32, 1121 (1994).CrossRefGoogle Scholar
  14. (14).
    K. Zhang, Q. Zhuang, Y. Zhou, X. Liu, G. Yang, and Z. Han, J. Polym. Sci., Part A: Polym. Chem., 50, 5115 (2012).CrossRefGoogle Scholar
  15. (15).
    H.-D. Kim and H. Ishida, J. Phys. Chem. A., 106, 3271 (2002).CrossRefGoogle Scholar
  16. (16).
    B. Kiskan, Y. Yagci, and H. Ishida, J. Polym. Sci., Part A: Polym. Chem., 46, 414 (2008).CrossRefGoogle Scholar
  17. (17).
    S. Rimdusit and H. Ishida, J. Polym. Sci., Part B: Polym. Phys., 38, 1687 (2000).CrossRefGoogle Scholar
  18. (18).
    H. Yeganeh, M. Razavi-Nouri, and M. Ghaffari, Polym. Eng. Sci., 48, 1329 (2008).CrossRefGoogle Scholar
  19. (19).
    P. Nuntahirun, O. Yamamoto and P. Paoprasert, Macromol. Res., 24, 816 (2016).CrossRefGoogle Scholar
  20. (20).
    T. Takeichi, T. Kano, and T. Agag, Polymer, 46, 12172 (2005).CrossRefGoogle Scholar
  21. (21).
    S. Yu, J. Kim, Y. Choi, C. Lim, and B. Seo, Macromol. Res., 24, 60 (2016).CrossRefGoogle Scholar
  22. (22).
    Z. Brunovska, J. P. Liu, and H. Ishida, Macromol. Chem. Phys., 200, 1745 (1999).CrossRefGoogle Scholar
  23. (23).
    A. Sudo, L.-C. Du, S. Hirayama, and T. Endo, J. Polym. Sci., Part A: Polym. Chem., 48, 2777 (2010).CrossRefGoogle Scholar
  24. (24).
    Y. Deng, Q. Zhang, H. Zhang, C. Zhang, W. Wang, and Y. Gu, Ind. Eng. Chem. Res., 53, 1933 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Seon Ho Lee
    • 1
  • Ki Seok Kim
    • 2
  • Ji Hye Shim
    • 2
  • Cheol-Hee Ahn
    • 1
  1. 1.Research Institute of Advanced Materials (RIAM), Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.ACI Process & Structure GroupSamsung Electro-Mechanics Co., LtdGyeonggiKorea

Personalised recommendations