Macromolecular Research

, Volume 26, Issue 4, pp 346–352 | Cite as

Preparation and Properties of Halogen-Free Flame Retardant and High Refractive Index Optical Resin via Click Chemistry

  • Chaoyun Luo
  • Jiandong Zuo
  • Fuquan Wang
  • Yanchao Yuan
  • Feng Lin
  • Jianqing Zhao


Halogen-free flame retardant tri(acryloyloxyethyl) phosphate (TAEP) optical resin was prepared using hydroxy ethyl acrylate (HEA) and phosphorus oxychloride and the chemical structure was characterized by Fourier transform infrared spectrometer and proton nuclear magnetic resonance spectrometer. Optical resins mixed by pentaerythritol tetrathioglycolic and TAEP with different S and P contents were obtained via click chemistry curing. The curing performance, thermal stability and flame retardant performance of the optical resins were analyzed by differential scanning calorimeter, thermogravimetric analyzer, and vertical burning tester, respectively. Additionally, the burned residual morphology of samples was investigated by scanning electronic microscopy, and the refractive indices of the optical resins were measured by an Abbe refractometer. The results revealed that increasing S content could improve the refractive indices of the resins; whereas, the flame retardant performances decreased. The optical resins with S content of 2% and P contents of 7.37% had refractive indices of 1.4935 and UL 94 V-0 flame retard level, respectively. The optical resins had good thermal stability and the 5% decomposition temperature reached up to 200.1 °C.


halogen-free flame retardant high refractive index click chemistry tri(acryloyloxyethyl) phosphate optical resin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. K. Kim and E. F. Schubert, Opt. Express, 16, 21835 (2008).CrossRefGoogle Scholar
  2. (2).
    X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, Opt. Laser Technol., 45, 262 (2013).CrossRefGoogle Scholar
  3. (3).
    P. Tao, Y. Li, R. W. Siegel, and L. S. Schadler, J. Appl. Polym. Sci., 130, 3785 (2013).CrossRefGoogle Scholar
  4. (4).
    R. Liu and X. Wang, Polym. Degrad. Stab., 94, 617 (2009).CrossRefGoogle Scholar
  5. (5).
    Y. Liu, Z. Y. Lin, X. Y. Zhao, and C. P. Wong, IEEE Trans. Compon. Packaging. Manuf. Technol., 4, 1125 (2014).CrossRefGoogle Scholar
  6. (6).
    M. Ma, F. W. Mont, X. Yan, J. Cho, E. F. Schubert, G. B. Kim, and C. Sone, Opt. Express, 19, 1135 (2011).CrossRefGoogle Scholar
  7. (7).
    S. Yang, J. Wang, S. Q. Huo, L. F. Cheng, and M. Wang, Polym. Degrad. Stab., 119, 251 (2015).CrossRefGoogle Scholar
  8. (8).
    S. Yang, J. Wang, S. Q. Huo, M. Wang, and J. P. Wang. Polym. Degrad. Stab., 121, 398 (2015).CrossRefGoogle Scholar
  9. (9).
    L. Q. Gu, G. A. Chen, and Y. W. Yao, Polym. Degrad. Stab., 108, 68 (2014).CrossRefGoogle Scholar
  10. (10).
    D. C. Sun and Y. W. Yao, Polym. Degrad. Stab., 96, 1720 (2011).CrossRefGoogle Scholar
  11. (11).
    H. Chen, K. Zhang, and J. Xu, Polym. Degrad. Stab., 96, 197 (2011).CrossRefGoogle Scholar
  12. (12).
    C. H. Lin, S. L. Chang, and T. P. Wei. Macromol. Chem. Phys., 212, 455 (2011).CrossRefGoogle Scholar
  13. (13).
    K. Dai, L. Song, R. K. K. Yuen, S. H. Jiang, H. F. Pan, and Y. Hu. Ind. Eng. Chem. Res., 51, 15918 (2012).CrossRefGoogle Scholar
  14. (14).
    Y. Z. Chen, H. Q. Peng, J. H. Li, Z. X. Xia, and H. Tan, J. Therm. Anal. Calorim., 115, 1639 (2014).CrossRefGoogle Scholar
  15. (15).
    Y. C. An and G. Konishi, J. Appl. Polym. Sci., 124, 789 (2012).CrossRefGoogle Scholar
  16. (16).
    J. G. Liu and M. Ueda, J. Mater. Chem., 19, 8907 (2009).CrossRefGoogle Scholar
  17. (17).
    S. D. Bhagat, J. Chatterjee, B. H. Chen, and A. E. Stiegman, Macromolecules., 45, 1174 (2012).CrossRefGoogle Scholar
  18. (18).
    H. Sun, D. J. Dobbins, Y. Dai, C. P. Kabb, S. Wu, J. A. Alfurhood, C. Rinaldi, and B. S. Sumerlin, ACS Macro Lett., 5, 688 (2016).CrossRefGoogle Scholar
  19. (19).
    B. C. Yao, J. Z. Sun, A. J. Qin, and B. Z. Tang, Chin. Sci. Bull., 58, 2711 (2013).CrossRefGoogle Scholar
  20. (20).
    H. Sun, C. P. Kabb, and B. S. Sumerlin, Chem. Sci., 5, 4646 (2014).CrossRefGoogle Scholar
  21. (21).
    H. Matsushima, J. Shin, C. N. Bowman, and C. E. Hoyle, J. Polym. Sci., Part A: Polym. Chem., 48, 3255 (2010).CrossRefGoogle Scholar
  22. (22).
    C. Y. Luo, J. D. Zuo, Y. C. Yuan, X. C. Lin, F. Lin, and J. Q. Zhao, Opt. Mater. Express, 5, 462 (2015).CrossRefGoogle Scholar
  23. (23).
    Y. Guo, J. Qiu, H. Tang, and C. Liu. J. Appl. Polym. Sci., 121, 727 (2011).CrossRefGoogle Scholar
  24. (24).
    C. Y. Luo, J. D. Zuo, F. Q. Wang, Y. C. Yuan, F. Lin, H. H. Huang, and J. Q. Zhao, Polym. Degrad. Stab., 129, 7 (2016).CrossRefGoogle Scholar
  25. (25).
    H. Liang and W. F. Shi, Polym. Degrad. Stab., 84, 525 (2004).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Chaoyun Luo
    • 1
    • 2
  • Jiandong Zuo
    • 3
  • Fuquan Wang
    • 4
  • Yanchao Yuan
    • 4
  • Feng Lin
    • 1
  • Jianqing Zhao
    • 2
    • 4
  1. 1.Polymer and Fine Chemicals Technology Development CenterShenzhen PolytechnicShenzhenP. R. China
  2. 2.The Key Laboratory of Polymer Processing Engineering, Ministry of EducationSouth China University of TechnologyGuangzhouP. R. China
  3. 3.College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional MaterialsShenzhen UniversityShenzhenP. R. China
  4. 4.College of Materials Science and EngineeringSouth China University of TechnologyGuangzhouP. R. China

Personalised recommendations