Macromolecular Research

, Volume 26, Issue 3, pp 254–262 | Cite as

The Effects of Compatibilizers on the Morphological, Mechanical, and Optical Properties of Biaxially Oriented Poly(ethylene terephthalate)/Syndiotactic Polystyrene Blend Films

  • Kweon Hyung Han
  • Myung Geun Jang
  • Kyu Jin Juhn
  • Choonglai Cho
  • Woo Nyon Kim
Article
  • 22 Downloads

Abstract

In this study, the effects of three different types of compatibilizers on the morphological, mechanical, and optical properties of poly(ethylene terephthalate) (PET) and syndiotactic-polystyrene (s-PS) (70/30, wt%) blends and biaxially oriented blend films of the two polymers were investigated. The morphological results of the PET/s-PS (70/30) blends revealed that when the 5 phr polystyrene-g-oxazoline (PS-g-OXA) was used as a compatibilizer, the domain size showed minimum. The mechanical studies of the PET/s-PS (70/30) blends showed that when 5 phr PS-g-OXA was used, increased tensile strength was obtained. The transmittance of the blend film showed the highest value (83.7%) for the biaxially oriented PET/s-PS (70/30) blend films with the PS-g-OXA (5 phr), compared with that of the blends without compatibilizer (70.8%), or with the styrene-co-maleic anhydride as a compatibilizer, at the wavenumber of 600 nm. The tensile strength of the biaxially oriented PET/s-PS (70/30) blend films also showed the highest value when PS-g-OXA (5 phr) was used as a compatibilizer. The morphological, optical, and mechanical results of the PET/s-PS (70/30) blends and biaxially oriented blend films of the two polymers showed that PS-g-OXA was the most effective compatibilizer, and that the optimum compatibilizer content was 5 phr.

Keywords

polymer blend compatibility morphology compatibilizer polymer film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. R. Paul and S. Newman, Polymer Blends, Academic Press, New York, 1978.Google Scholar
  2. (2).
    S. Lee and O. O. Park, Polymer, 42, 6661 (2001).CrossRefGoogle Scholar
  3. (3).
    K. H. Yoon, H. W. Lee, and O O. Park, J. Appl. Polym. Sci., 70, 389 (1998).CrossRefGoogle Scholar
  4. (4).
    J. O. Song, M. Y. Jeon, and C. K. Kim, Macromol. Res., 15, 640 (2007).CrossRefGoogle Scholar
  5. (5).
    S.-J. Park, Macromol. Res., 17, 585 (2009).CrossRefGoogle Scholar
  6. (6).
    T. A. Adegbola, S. E. Rotimi, and S. R. Suprakas, J. Appl. Polym. Sci., 133, 43777 (2016).CrossRefGoogle Scholar
  7. (7).
    H. S. Lee and E. S. Kim, Macromolecules, 38, 1196 (2005).CrossRefGoogle Scholar
  8. (8).
    M. G. Jang, Y. K. Lee, and W. N. Kim, Macromol. Res., 23, 916 (2015).CrossRefGoogle Scholar
  9. (9).
    J. M. Kim, M. G. Jang, D. H. Park, and W. N. Kim, J. Appl. Polym. Sci., 133, 43856 (2016).Google Scholar
  10. (10).
    S. J. Lim, J. G. Lee, S. H. Hur, and W. N. Kim, Macromol. Res., 22, 632 (2014).CrossRefGoogle Scholar
  11. (11).
    J. E. Yoo, Y. Y. Kim, C. K. Kim, and J. W. Lee, Macromol. Res., 11, 303 (2003).CrossRefGoogle Scholar
  12. (12).
    W. Cai, X. Ma, J. Guo, X. Peng, S. Zhang, Z. Qiu, J. Ying, and J. Wang, J. Appl. Polym. Sci., 134, 45163 (2017).CrossRefGoogle Scholar
  13. (13).
    K. Nevalainen, D. H. MacKerron, N. J. Everall, J. Kuusipalo, Mater. Chem. Phys., 101, 103 (2007).CrossRefGoogle Scholar
  14. (14).
    K. Ito, C. Nonomura, K. Yamashita, T. Suzuki, C. Chinwanitcharoen, T. Yamada, and H. Ishihara, J. Appl. Polym. Sci., 92, 1243 (2004).CrossRefGoogle Scholar
  15. (15).
    V. Prattipati, Y. S. Hu, S. Bandi, D. A. Schiraldi, A. Hiltner, E. Baer, and S. Mehta, J. Appl. Polym. Sci., 97, 1361 (2005).CrossRefGoogle Scholar
  16. (16).
    S. J. Yoo, S. H. Lee, M. Jeon, H. S. Lee, and W. N. Kim, Macromol. Res., 21, 1182 (2013).CrossRefGoogle Scholar
  17. (17).
    M. W. Fowler and W. E. Baker, Polym. Eng. Sci., 28, 1427 (1988).CrossRefGoogle Scholar
  18. (18).
    H. Wang, Q. Qian, X. Jiang, X. Liu, L. Xiao, and B. Huang, J. Appl. Polym. Sci., 126, E265 (2012).Google Scholar
  19. (19).
    C. D. James, C. Jeynes, N. P. Barradas, L. Clifton, R. M. Dalgliesh, R. F. Smith, S. W. Sankey, L. R. Hutchings, and R. L. Thompson, React. Funct. Polym., 89, 40 (2015).CrossRefGoogle Scholar
  20. (20).
    J. Wang, F. Zhu, H. Li, S. Lin, J. Appl. Polym. Sci., 86, 656 (2002).CrossRefGoogle Scholar
  21. (21).
    B. Lotz, Polymer, 56, 245 (2015).CrossRefGoogle Scholar
  22. (22).
    I. Park, J. W. Barlow, and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 30, 1021 (1992).CrossRefGoogle Scholar
  23. (23).
    A. E. Nesterov and Y. S. Lipatov, Polymer, 40, 1347 (1999).CrossRefGoogle Scholar
  24. (24).
    J. B. Lee, Y. K. Lee, G.D. Choi, S. W. Na, T. S. Park, and W. N. Kim, Polym. Degrad. Stab., 96, 553 (2011).CrossRefGoogle Scholar
  25. (25).
    F. Liu, S. Zeng, H. Zhou, and J. Li, J. Appl. Polym. Sci., 125, 731 (2012).CrossRefGoogle Scholar
  26. (26).
    Q. T. Pham, R. Petiaud, H. Waton, M.-F. Llauro-Darricades, Proton and Carbon NMR Spectra of Polymers, Biddles Ltd, London, 1991.Google Scholar
  27. (27).
    G. A. Russell, P. M. Henrichs, J. M. Hewitt, H. R. Grashof, and M. A. Sandhu, Macromolecules, 14, 1764 (1981).CrossRefGoogle Scholar
  28. (28).
    T. Uryu, T. Kawamura, and K. Matsuzaki, J. Polym. Sci., Polym. Chem. Ed., 17, 2019 (1979).CrossRefGoogle Scholar
  29. (29).
    L. Jakisch, H. Komber, R. Wursche, and F. Bohme, J. Appl. Polym. Sci., 94, 2170 (2004).CrossRefGoogle Scholar
  30. (30).
    Y. Zhang, K. Y. Rhee, and S.-J. Park, Compos. Part B: Eng., 114, 111 (2017).CrossRefGoogle Scholar
  31. (31).
    Y. Zhang, X. Li, X. Ge, F. Deng, and U. R. Cho, Macromol. Res., 23, 952 (2015).CrossRefGoogle Scholar
  32. (32).
    T. W. Yoo, H. G. Yoon, S. J. Choi, M. S. Kim, Y. H. Kim, and W. N. Kim, Macromol. Res., 18, 583 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Kweon Hyung Han
    • 1
    • 2
  • Myung Geun Jang
    • 1
  • Kyu Jin Juhn
    • 1
  • Choonglai Cho
    • 3
  • Woo Nyon Kim
    • 1
  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.SKC Advanced Technology R&DSuwon, GyeonggiKorea
  3. 3.Graduate School of Management of TechnologyKorea UniversitySeoulKorea

Personalised recommendations