Macromolecular Research

, Volume 26, Issue 3, pp 246–253 | Cite as

Thermally Stable Bio-Based Aliphatic Polycarbonates with Quadra-Cyclic Diol from Renewable Sources

  • Jeong Eon Park
  • Wook Kyeom Kim
  • Da Young Hwang
  • Gwang Ho Choi
  • Dong Hack Suh


CM diol (i.e., 2,4:3,5-di-O-camphor-D-mannitol) is bio-based monomer derived from D-mannitol and camphor. CM diol consists of complex hexagonal rings that are linked as the form of spiro, fused and bridged ring and the structure of CM diol influence the rigidity and thermal properties. Primary alcohol at the ends of CM diol is more reactive than secondary alcohol in isosorbide which is applied for the field of polycarbonate. A series of copolycarbonates based on CM diol was synthesized and a homo-polycarbonate except bisphenol A (BPA) diol had a high Tg value of 164 °C, which is higher than T g (138 °C) of polycarbonates based on BPA (BPA-PC). In addition, the polycarbonates containing CM diol showed enhanced susceptibility to hydrolysis at acidic solution and decomposed better than BPA-PC.


biopolymers polycarbonates degradable BPA free 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    W. Zhai, J. Yu, W. Ma, and J. He, Macromolecules, 40, 73 (2007).CrossRefGoogle Scholar
  2. (2).
    S. M. Gross, G. W. Roberts, D. J. Kiserow, and J. M. DeSimone, Macromolecules, 34, 3916 (2001).CrossRefGoogle Scholar
  3. (3).
    M. D. Watson and K. B. Wagener, Macromolecules, 33, 8963 (2000).CrossRefGoogle Scholar
  4. (4).
    M. G. García-Martín, R. R. Pérez, E. B. Hernández, J. L. Espartero, S. Muñoz-Guerra, and J. A. Galbis, Macromolecules, 38, 8664 (2005).CrossRefGoogle Scholar
  5. (5).
    E. J. Hoekstra and C. Simoneau, Crit. Rev. Food Sci. Nutr., 53, 386 (2013).CrossRefGoogle Scholar
  6. (6).
    W. Zhu, W. Zhou, C. Li, Y. Xiao, D. Zhang, G. Guan, and D. Wang, J. Macromol. Sci., Phys. Part A, 48, 583 (2011).CrossRefGoogle Scholar
  7. (7).
    A. C. Hagenaars, J. J. Pesce, C. Bailly, and B. A. Wolf, Polymer, 42, 7653 (2001).CrossRefGoogle Scholar
  8. (8).
    F. S. vom Saal, B. T. Akingbemi, S. M. Belcher, L. S. Birnbaum, D. A. Crain, M. Eriksen, F. Farabollini, L. J. Guillette, Jr., R. Hauser, J. J. Heindel, S. M. Ho, P. A. Hunt, T. Iguchi, S. Jobling, J. Kanno, R. A. Keri, K. E. Knudsen, H. Laufer, G. A. LeBlanc, M. Marcus, J. A. McLachlan, J. P. Myers, A. Nadal, R. R. Newbold, N. Olea, G. S. Prins, C. A. Richter, B. S. Rubin, C. Sonnenschein, A. M. Soto, C. E. Talsness, J. G. Vandenbergh, L. N. Vandenberg, D. R. Walser-Kuntz, C. S. Watson, W. V. Welshons, Y. Wetherill, and R. T. Zoeller, Regul. Toxicol., 24, 131 (2007).Google Scholar
  9. (9).
    S. Chatti, G. Schwarz, and H. R. Kricheldorf, Macromolecules, 39, 9064 (2006).CrossRefGoogle Scholar
  10. (10).
    F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, and J. P. Pascault, Prog. Polym. Sci., 35, 578 (2010).CrossRefGoogle Scholar
  11. (11).
    B. A. J. Noordover, D. Haveman, R. Duchateau, R. A. T. M. van Benthem, and C. E. Koning, J. Appl. Polym. Sci. 121, 1450 (2011).CrossRefGoogle Scholar
  12. (12).
    J. Feng, R.-X. Zhuo, and X.-Z. Zhang, Prog. Polym. Sci., 37, 211 (2012).CrossRefGoogle Scholar
  13. (13).
    C.-H. Lee, H. Takagi, H. Okamoto, and M. Kato, J. Appl. Polym. Sci., 127, 530 (2013).CrossRefGoogle Scholar
  14. (14).
    J. Wu, P. Eduard, L. Jasinska-Walc, A. Rozanski, B. A. J. Noordover, D. S. van Es, and C. E. Koning, Macromolecules, 46, 384 (2013).CrossRefGoogle Scholar
  15. (15).
    W. J. Yoon, S. Y. Hwang, J. M. Koo, Y. J. Lee, S. U. Lee, and S. S. Im, Macromolecules, 46, 7219 (2013).CrossRefGoogle Scholar
  16. (16).
    J. Wu, P. Eduard, S. Thiyagarajan, B. A. Noordover, D. S. van Es, and C. E. Koning, ChemSusChem, 8, 67 (2015).CrossRefGoogle Scholar
  17. (17).
    Q. Li, W. Zhu, C. Li, G. Guan, D. Zhang, Y. Xiao, and L. Zheng, J. Polym. Sci. A, 51, 1387 (2013).CrossRefGoogle Scholar
  18. (18).
    L. Feng, W. Zhu, C. Li, G. Guan, D. Zhang, Y. Xiao, and L. Zheng, Polym. Chem., 6, 633 (2015).CrossRefGoogle Scholar
  19. (19).
    C. Lavilla, A. M. de Ilarduya, A. Alla, M. G. García-Martín, J. A. Galbis, and S. Muñoz-Guerra, Macromolecules, 45, 8257 (2012).CrossRefGoogle Scholar
  20. (20).
    C. Lavilla, A. Alla, A. Martinez de Ilarduya, and S. Munoz-Guerra, Biomacromolecules, 14, 781 (2013).CrossRefGoogle Scholar
  21. (21).
    C. Japu, A. M. de Ilarduya, A. Alla, M. G. García-Martín, J. A. Galbis, and S. Muñoz-Guerra, Macromol. Chem. Phys., 215, 2048 (2014).CrossRefGoogle Scholar
  22. (22).
    M. Yokoe, K. Aoi, and M. Okada, J. Polym. Sci. A, 43, 3909 (2005).CrossRefGoogle Scholar
  23. (23).
    E. Gubbels, C. Lavilla, A. M. de Ilarduya, B. A. J. Noordover, C. E. Koning, and S. Muñoz-Guerra, J. Polym. Sci. A, 52, 164 (2014).CrossRefGoogle Scholar
  24. (24).
    O. Hauenstein, M. Reiter, S. Agarwal, B. Rieger, and A. Greiner, Green Chem., 18, 760 (2016).CrossRefGoogle Scholar
  25. (25).
    T. Hashimoto, H. Takagi, Y. Hasegawa, H. Matsui, M. Urushisaki, and T. Sakaguchi, J. Polym. Sci. A, 48, 952 (2010).CrossRefGoogle Scholar
  26. (26).
    J. A. Smith, K. R. Brzezinska, D. J. Valenti, and K. B. Wagener, Macromolecules, 33, 3781 (2000).CrossRefGoogle Scholar
  27. (27).
    P. Dobrzynski and J. Kasperczyk, J. Polym. Sci. A, 44, 3184 (2006).CrossRefGoogle Scholar
  28. (28).
    P. Bajaj and D. N. Khanna, Eur. Polym. J., 17, 275 (1981).CrossRefGoogle Scholar
  29. (29).
    Y. W. Kim, J. T. Park, J. H. Koh, B. R. Min, and J. H. Kim, Polym. Adv. Technol., 19, 944 (2008).CrossRefGoogle Scholar
  30. (30).
    T. G. Fox and P. J. Flory, J. Polym. Sci., 14, 315 (1954).CrossRefGoogle Scholar
  31. (31).
    H.-J. Lee, T. Kodaira, M. Urushisaki, and T. Hashimoto, Polymer, 45, 7505 (2004).CrossRefGoogle Scholar
  32. (32).
    H.-J. Lee, H. Nakai, T. Kodaira, M. Urushisaki, and T. Hashimoto, Eur. Polym. J., 41, 1225 (2005).CrossRefGoogle Scholar
  33. (33).
    E. E. Kwan, J. Chem. Educ., 82, 1026 (2005).CrossRefGoogle Scholar
  34. (34).
    S. Binauld and M. H. Stenzel, Chem. Commun., 49, 2082 (2013).CrossRefGoogle Scholar
  35. (35).
    Y. Akiyama, A. Harada, Y. Nagasaki, and K. Kataoka, Macromolecules, 33, 5841 (2000).CrossRefGoogle Scholar
  36. (36).
    H. Seyednejad, W. Ji, W. Schuurman, W. J. Dhert, J. Malda, F. Yang, J. A. Jansen, C. van Nostrum, T. Vermonden, and W. E. Hennink, Macromol. Biosci., 11, 1684 (2011).CrossRefGoogle Scholar
  37. (37).
    M. Zheng, C. Yang, F. Meng, R. Peng, and Z. Zhong, Macromol. Res., 20, 327 (2012).CrossRefGoogle Scholar
  38. (38).
    B. Jin, J. Shen, R. Peng, Y. Shu, S. Chu, and H. Dong, Macromol. Res., 22, 117 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jeong Eon Park
    • 1
  • Wook Kyeom Kim
    • 1
  • Da Young Hwang
    • 1
  • Gwang Ho Choi
    • 1
  • Dong Hack Suh
    • 1
  1. 1.Department of Chemical Engineering, College of EngineeringHanyang UniversitySeoulKorea

Personalised recommendations