Advertisement

Macromolecular Research

, Volume 26, Issue 3, pp 284–290 | Cite as

Polyamine-Functionalized Polydiacetylene (PDA) Vesicles for Colorimetric Sensing of Carbon Dioxide

  • Kyung Woo Kim
  • Jeong Min Lee
  • Yong Min Kwon
  • Tae-Young Choi
  • Jaoon Young Hwan Kim
  • Seungseob Bae
  • Jong-Am Song
Article

Abstract

Ocean acidification resulting from anthropogenic CO2 has led to severe threats to marine biodiversity and ecosystems. Therefore, an effective CO2 sensing system is necessary for marine environment monitoring. In this study, polyaminefunctionalized polydiacetylene was synthesized via the conjugation of 10,12-tricosadiynoic acid (TRCDA) monomers with diethylenetriamine (DETA), and its capability for CO2 detection was demonstrated. The structure of TRCDA-DETA was confirmed using nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. Then, the colorimetric and fluorogenic responses of TRCDA-DETA vesicles were examined by applying CO2. A specific color transition with a colorimetric response (CR%) of 34.39±1.46 was observed within 3 min of CO2 exposure as well as detecting fluorescent response upon CO2 detection coincidently. These results indicated that TRCDA-DETA vesicles can be an effective tool for CO2 detection, and their unique properties may have potential applications in multiple fields.

Keywords

polydiacetylene PDA vesicles carbon dioxide CO2 detection acid-responsive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6036_MOESM1_ESM.pdf (374 kb)
Supporting Information

References

  1. (1).
    K. M. G. Mostofa, C.-Q. Liu, W. Zhai, M. Minella, D. Vione, K. Gao, D. Minakata, T. Arakaki, T. Yoshioka, K. Hayakawa, E. Konohira, E. Tanoue, A. Akhand, A. Chanda, B. Wang, and H. Sakuga, Biogeosciences, 13, 1767 (2016).CrossRefGoogle Scholar
  2. (2).
    K. J. Kroeker, R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte, and J.-P. Gattuso, Global Change Biol., 19, 1884 (2013).CrossRefGoogle Scholar
  3. (3).
    J. M. Guinotte and V. J. Fabry, Ann. N. Y. Acad. Sci., 1134, 320 (2008).CrossRefGoogle Scholar
  4. (4).
    S. Widdicombe and J. I. Spicer, J. Exp. Mar. Biol. Ecol., 366, 187 (2008).CrossRefGoogle Scholar
  5. (5).
    J. M. Sunday, K. E. Fabricius, K. J. Kroeker, K. M. Anderson, N. E. Brown, J. P. Barry, S. D. Connell, S. Dupont, B. Gaylord, J. M. Hall-Spencer, T. Klinger, M. Milazzo, P. L. Munday, B. D. Russell, E. Sanford, V. Thiyagarajan, M. L. H. Vaughan, S. Widdicombe, and C. D. G Harley, Nat. Clim. Change, 7, 81 (2016).CrossRefGoogle Scholar
  6. (6).
    S.-A. Watson, J. B. Fields, and P. L. Munday, Biol. Lett., 13, 20160797 (2017).CrossRefGoogle Scholar
  7. (7).
    K. J. Kroeker, E. Sanford, B. M. Jellison, and B. Gaylord, Biol. Bull., 226, 211 (2014).CrossRefGoogle Scholar
  8. (8).
    A. J. Andersson and D. Gledhill, Annu. Rev. Mar. Sci., 5, 321 (2013).CrossRefGoogle Scholar
  9. (9).
    M. Holcomb, A. A. Venn, E. Tambutte, D. Allemand, J. Trotter, and M. McCulloch, Sci. Rep., 4, Article No. 5207 (2014).Google Scholar
  10. (10).
    W. Liu, Z. Yu, X. Huang, Y. Zhi, J. Lin, H. Zhang, X. Yi, and M. He, Mar. Environ. Res., 130, 174 (2017).CrossRefGoogle Scholar
  11. (11).
    C. Del Monaco, M. E. Hay, P. Gartrell, P. J. Mumby, and G. Diaz-Pulido, Sci. Rep., 7, 41053 (2017).CrossRefGoogle Scholar
  12. (12).
    I. Nagelkerken, S. U. Goldenberg, C. M. Ferreira, B. D. Russell, and S. D. Connell, Curr. Biol., 27, 2177 (2017).CrossRefGoogle Scholar
  13. (13).
    M. M. Ashur, N. K. Johnston, and D. L. Dixson, Integr. Comp. Biol., 57, 63 (2017).CrossRefGoogle Scholar
  14. (14).
    D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, Renew. Sustainable Energy Rev., 39, 426 (2014).CrossRefGoogle Scholar
  15. (15).
    R. M. Cuéllar-Franca and A. Azapagic, J. CO2 Util., 9, 82 (2015).CrossRefGoogle Scholar
  16. (16).
    W. Lu, J. P. Sculley, D. Yuan, R. Krishna, and H.-C. Zou, J. Phys. Chem. C, 117, 4057 (2013).CrossRefGoogle Scholar
  17. (17).
    A. P. Salvi, P. D. Vaidya, and E. Y. Kenig, Can. J. Chem. Eng., 92, 2021 (2014).CrossRefGoogle Scholar
  18. (18).
    A. Hartono, E. F. da Silva, H. Grasdalen, and H. F. Svendsen, Ind. Eng. Chem. Res., 46, 249 (2007).CrossRefGoogle Scholar
  19. (19).
    A. Hartono, K. A. Hoff, T. Mejdell, and H. F. Svendsen, Energy Procedia, 4, 179 (2011).CrossRefGoogle Scholar
  20. (20).
    T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Weirs, C. S. Hong, and J. R. Long, J. Am. Chem. Soc., 134, 7056 (2012).CrossRefGoogle Scholar
  21. (21).
    N. Zhong, H. Liu, X. Luo, M. S. AL-Marri, A. Benamor, R. Idem, P. Tontiwachwuthikul, and Z. Liang, Ind. Eng. Chem. Res., 55, 7307 (2016).CrossRefGoogle Scholar
  22. (22).
    A. Hartono, E. F. da Silva, and H. F. Svendsen, Chem. Eng. Sci., 64, 3205 (2009).CrossRefGoogle Scholar
  23. (23).
    K. W. Kim, H. Choi, G. S. Lee, D. J. Ahn, M.-K. Oh, and J.-M. Kim, Macromol. Res., 14, 483 (2006).CrossRefGoogle Scholar
  24. (24).
    K. W. Kim, H. Choi, G. S. Lee, D. J. Ahn, and M.-K. Oh, Colloids Surf., B, 66, 213 (2008).CrossRefGoogle Scholar
  25. (25).
    M. K. Park, K. W. Kim, D. J. Ahn, and M.-K. Oh, Biosens. Bioelectron., 35, 44 (2012).Google Scholar
  26. (26).
    C. H. Park, J. P. Kim, S. Lee, S. W. Jeon, P. J. Yoo, and S. J. Sim, Adv. Funct. Mater., 19, 3703 (2009).CrossRefGoogle Scholar
  27. (27).
    X. Chen, C. Li, M. Gratzel, R. Kostecki, and S. S. Mao, Chem. Soc. Rev., 41, 4610 (2012).CrossRefGoogle Scholar
  28. (28).
    X. Sun, T. Chen, S. Huang, Li. L, and H. Peng, Chem. Soc. Rev., 39, 4244 (2010).CrossRefGoogle Scholar
  29. (29).
    Q.-L. Zhu, J. Li, and Q. Xu, J. Am. Chem. Soc., 135, 17751 (2013).CrossRefGoogle Scholar
  30. (30).
    R. Jelinek and M. Ritenberg, RSC Adv., 3, 21192 (2013).CrossRefGoogle Scholar
  31. (31).
    R. Pimsen, A. Khumsri, S. Wacharasindhu, G. Tumcharern, and M. Sukwattanasinitt, Biosens. Bioelectron., 62, 8 (2014).CrossRefGoogle Scholar
  32. (32).
    J. Hong, D. H. Park, S. Baek, S. Song, C. W. Lee, and J. M. Kim, ACS Appl. Mater. Interfaces, 7, 8339 (2015).CrossRefGoogle Scholar
  33. (33).
    J. J. Barchi, D. Yun, D. Jeong, E. Cho, and S. Jung, Plos One, 10, Article No. e0143454 (2015).Google Scholar
  34. (34).
    S. H. Jung, H. Jang, M. C. Lim, J. H. Kim, K. S. Shin, S. M. Kim, H. Y. Kim, Y. R. Kim, and T. J. Jeon, Anal. Chem., 87, 2072 (2015).CrossRefGoogle Scholar
  35. (35).
    J. Park, S. K. Ku, D. Seo, K. Hur, H. Jeon, D. Shvartsman, H. K. Seok, D. J. Mooney, and K. Lee, Chem. Commun. (Camb.), 52, 10346 (2016).CrossRefGoogle Scholar
  36. (36).
    S. Dolai, S. K. Bhunia, S. S. Beglaryan, S. Kolusheva, L. Zeiri, and R. Jelinek, ACS Appl. Mater. Interfaces, 9, 2891 (2017).CrossRefGoogle Scholar
  37. (37).
    D. Yao, S. Li, X. Zhu, J. Wu, and H. Tian, Chem. Commun. (Camb.), 53, 1233 (2017).CrossRefGoogle Scholar
  38. (38).
    R. W. Carpick, D. Y. Sasaki, M. S. Marcus, M. A. Eriksson, and A. R. Burns, J. Phys. Condens. Matter, 16, R679 (2004).CrossRefGoogle Scholar
  39. (39).
    I. Yoo, S. Song, B. Yoon, and J. M. Kim, Macromol. Rapid Commun., 33, 1256 (2012).CrossRefGoogle Scholar
  40. (40).
    J. T. Wen, P. Viravathana, B. Inquel, C. Roper, and H. Tsutsui, SLAS Technol., 22, 406 (2017).Google Scholar
  41. (41).
    J.-P. Jeong, E. Cho, D. Yun, T. Kim, I.-S. Lee, and S. Jung, Polymers, 9, 127 (2017).CrossRefGoogle Scholar
  42. (42).
    S. H. Won, J. U. Lee, and S. J. Sim, J. Nanosci. Nanotechnol., 13, 3792 (2013).CrossRefGoogle Scholar
  43. (43).
    J. T. Wen, K. Bohorquez, and H. Tsutsui, Sens. Actuators B: Chem., 232, 313 (2016).CrossRefGoogle Scholar
  44. (44).
    W. Zhu, J. Li, Y. J. Leong, I. Rozen, X. Qu, R. Dong, Z. Wu, W. Gao, P. H. Chung, J. Wang, and S. Chen, Adv. Mater., 27, 4411 (2015).CrossRefGoogle Scholar
  45. (45).
    Q. Xu, S. Lee, Y. Cho, M. H. Kim, J. Bouffard, and J. Yoon, J. Am. Chem. Soc., 135, 17751 (2013).CrossRefGoogle Scholar
  46. (46).
    S. Okada, S. Peng, W. Spevak, and D. Charych, Acc. Chem. Res., 31, 229 (1998).CrossRefGoogle Scholar
  47. (47).
    S. J. Kew and E. A. H. Hall, Anal. Chem., 78, 2231 (2006).CrossRefGoogle Scholar
  48. (48).
    A. A. Deckert, J. C. Horne, B. Valentine, L. Kiernan, and L. Fallon, Langmuir, 11, 643 (1995).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Kyung Woo Kim
    • 1
  • Jeong Min Lee
    • 1
  • Yong Min Kwon
    • 1
  • Tae-Young Choi
    • 1
  • Jaoon Young Hwan Kim
    • 1
  • Seungseob Bae
    • 1
  • Jong-Am Song
    • 2
  1. 1.National Marine Biodiversity Institute of KoreaChungnamKorea
  2. 2.Korea Basic Science InstituteDaejeonKorea

Personalised recommendations