Macromolecular Research

, Volume 26, Issue 3, pp 263–269 | Cite as

Protein-Patterning on Functionalized, Non-Biofouling Poly[N-acryloxysuccinimide-co-oligo(ethylene glycol) methyl ether methacrylate] Film-Coated PET Surfaces

  • Gyeongyeop Han
  • Yoonyoung Kim
  • Kyungtae Kang
  • Bong Soo Lee
  • Jungkyu K. Lee


We successfully fabricated poly(ethylene terephthalate) (PET) surfaces through a perfluoroaryl azide-based photochemical reaction, and subsequently formed an intrinsically activated, non-biofouling poly[N-acryloxysuccinimide-co-oligo(ethylene glycol) methyl ether methacrylate] on the surface through surface-initiated, controlled radical polymerization. The grafted copolymer film on PET facilely generated a protein pattern using a microcontact printing technique without employing both an activation step to introduce an active functional group (e.g., succinimidyl ester) and a passivation process for minimizing non-specific adsorption. Consequently, we characterized the functionalized PET surfaces by using various methods including contact angle measurement, X-ray photoelectron spectroscopy (XPS), scanning probe microscopy (SPM), field-emission scanning electron microscopy (FE-SEM). In addition, we evaluated the non-biofouling efficacy of the protein-patterned copolymer film on PET by confocal laser scanning microscopy.


organic polymer substrate copolymer coating biopatterning surface-initiated controlled radical polymerization photochemical reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    U. K. Thiele, Polyester Bottle Resins, Production, Processing, Properties and Recycling, Heidelberg Business Media, Heidelberg, 2007, p 85.Google Scholar
  2. (2).
    V. B. Gupta and Z. Bashir, Handbook of Thermoplasitc Polyesters, Wiley-VCH, Weinheim, 2002.Google Scholar
  3. (3).
    H. Köpnick, M. Schmidt, W. Brügging, J. Rüter, and W. Kaminsky, Polyesters in Ulmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005, pp 233–238.Google Scholar
  4. (4).
    K. Ohno, Y. Kayama, V. Ladmiral, T. Fukuda, and Y. Tsujii, Macromolecules, 43, 5569 (2010).CrossRefGoogle Scholar
  5. (5).
    C. C. Ibeh, Thermoplactic Materials: Properties, Manufacturing Methods, and Applications, CRC Press, Boca Raton, Florida, 2011.Google Scholar
  6. (6).
    J. W. Leem, M. Choi, and J. S. Yu, ACS Appl. Mater. Interfaces, 7, 2349 (2015).CrossRefGoogle Scholar
  7. (7).
    W. Gutowski, H. Dodiuk, and K. L. Mittal, Recent Advances in Adhesion Science and Technology: In Honor of Dr. Kash Mittal, CRC Press, Boca Raton, Florida, 2013.Google Scholar
  8. (8).
    J. E. Puskas and Y. H. Chen, Biomacromolecules, 5, 1141 (2004).CrossRefGoogle Scholar
  9. (9).
    A. Metzger, Biomed. Eng., 11, 301 (1976).Google Scholar
  10. (10).
    L. Barbe, B. Boval, M. P. Wautier, and J. L. Wautier, Transfusion, 40, 1250 (2000).CrossRefGoogle Scholar
  11. (11).
    N. Angelova and D. Hunkeler, Trends Biotechnol., 17, 409 (1999).CrossRefGoogle Scholar
  12. (12).
    A. J. Domb and W. Khan, in Advances in Delivery Science and Technology, Springer, New York, 2014.Google Scholar
  13. (13).
    N. Blanchemain, S. Haulon, B. Martel, M. Traisnel, M. Morcellet, and H. F. Hildebrand, Eur. J. Vasc. Endovasc., 29, 628 (2005).CrossRefGoogle Scholar
  14. (14).
    T. Ueberrueck, J. Tautenhahn, L. Meyer, O. Kaufmann, H. Lippert, I. Gastinger, and T. Wahlers, J. Surg. Res., 124, 305 (2005).CrossRefGoogle Scholar
  15. (15).
    N. Blanchemain, S. Haulon, F. Boschin, E. Marcon-Bachari, M. Traisnel, M. Morcellet, H. F. Hildebrand, and B. Martel, Biomol. Eng., 24, 149 (2007).CrossRefGoogle Scholar
  16. (16).
    P. A. Ramires, L. Mirenghi, A. R. Romano, F. Palumbo, and G. Nicolardi, J. Biomed. Mater. Res., 51, 535 (2000).CrossRefGoogle Scholar
  17. (17).
    N. Poddevin, M. W. King, and R. G. Guidoin, J. Biomed. Mater. Res., 38, 370 (1997).CrossRefGoogle Scholar
  18. (18).
    N. Poddevin, B. Cronier, Y. Marois, J. P. Delagoutte, D. Mainard, J. H. Jaeger, A. Y. Belanger, M. W. King, and R. Guidoin, Rev. Chir. Orthop. Reparatrice Appar. Mot., 81, 410 (1995).Google Scholar
  19. (19).
    W. K. Cho, S. M. Kang, and J. K. Lee, J. Nanosci. Nanotechnol., 14, 1231 (2014).CrossRefGoogle Scholar
  20. (20).
    B. S. Lee, J. Lee, G. Han, E. Ha, I. S. Choi, and J. K. Lee, Chem. Asian J., 11, 2057 (2016).CrossRefGoogle Scholar
  21. (21).
    B. S. Lee, Y. S. Chi, K. B. Lee, Y. G. Kim, and I. S. Choi, Biomacromolecules, 8, 3922 (2007).CrossRefGoogle Scholar
  22. (22).
    I. Banerjee, R. C. Pangule, and R. S. Kane, Adv. Mater., 23, 690 (2011).CrossRefGoogle Scholar
  23. (23).
    S. Roux and S. Demoustier-Champagne, J. Polym. Sci., Part A: Polym. Chem., 41, 1347 (2003).CrossRefGoogle Scholar
  24. (24).
    T. Farhan and W. T. S. Huck, Eur. Polym. J., 40, 1599 (2004).CrossRefGoogle Scholar
  25. (25).
    K. Fukazawa, A. Nakao, M. Maeda, and K. Ishihara, Acs. Appl. Mater. Inter., 8, 24994 (2016).CrossRefGoogle Scholar
  26. (26).
    J. Kim, D. Hong, S. Jeong, B. Kong, S. M. Kang, Y. G. Kim, and I. S. Choi, Chem. Asian J., 6, 363 (2011).CrossRefGoogle Scholar
  27. (27).
    S. P. Jeong, D. Hong, S. M. Kang, I. S. Choi, and J. K. Lee, Asian J. Org. Chem., 2, 568 (2013).CrossRefGoogle Scholar
  28. (28).
    S. P. Jeong, S. M. Kang, D. Hong, H. Y. Lee, I. S. Choi, S. Ko, and J. K. Lee, J. Nanosci. Nanotechnol., 15, 1767 (2015).CrossRefGoogle Scholar
  29. (29).
    J. Raj, G. Herzog, M. Manning, C. Volcke, B. D. MacCraith, S. Ballantyne, M. Thompson, and D. W. M. Arrigan, Biosens. Bioelectron., 24, 2654 (2009).CrossRefGoogle Scholar
  30. (30).
    S. Laib and B. D. MacCraith, Anal. Chem., 79, 6264 (2007).CrossRefGoogle Scholar
  31. (31).
    J. Zhang, C. Das, and Z. H. Fan, Microfluid. Nanofluid., 5, 327 (2008).CrossRefGoogle Scholar
  32. (32).
    B. S. Lee, H. Kim, I. S. Choi, and W. K. Cho, J. Polym. Sci., Part A: Polym. Chem., 55, 329 (2017).CrossRefGoogle Scholar
  33. (33).
    M. D. Yan, S. X. Cai, M. N. Wybourne, and J. F. W. Keana, J. Am. Chem. Soc., 115, 814 (1993).CrossRefGoogle Scholar
  34. (34).
    K. B. Lee, Y. Kim, and I. S. Choi, Bull. Korean Chem. Soc., 24, 161 (2003).CrossRefGoogle Scholar
  35. (35).
    A. Larsson, T. Ekblad, O. Andersson, and B. Liedberg, Biomacromolecules, 8, 287 (2007).CrossRefGoogle Scholar
  36. (36).
    B. S. Lee, S. Park, K. B. Lee, S. Jon, and I. S. Choi, Biointerphases, 2, 136 (2007).CrossRefGoogle Scholar
  37. (37).
    T. Bocking, K. A. Kilian, T. Hanley, S. Ilyas, K. Gaus, M. Gal, and J. J. Gooding, Langmuir, 21, 10522 (2005).CrossRefGoogle Scholar
  38. (38).
    W. J. Gammon, O. Kraft, A. C. Reilly, and B. C. Holloway, Carbon, 41, 1917 (2003).CrossRefGoogle Scholar
  39. (39).
    R. Barbey, L. Lavanant, D. Paripovic, N. Schuwer, C. Sugnaux, S. Tugulu, and H. A. Klok, Chem. Rev., 109, 5437 (2009).CrossRefGoogle Scholar
  40. (40).
    D. M. Jones, A. A. Brown, and W. T. S. Huck, Langmuir, 18, 1265 (2002).CrossRefGoogle Scholar
  41. (41).
    S. P. Jeong, B. S. Lee, S. M. Kang, S. Ko, I. S. Choi, and J. K. Lee, Chem. Commun., 50, 5291 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Green-Nano Materials Research CenterKyungpook National UniversityDaeguKorea
  2. 2.Department of Applied ChemistryKyung Hee UniversityGyeonggiKorea
  3. 3.Center for Cell-Encapsulation Research, Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations