Macromolecular Research

, Volume 26, Issue 3, pp 270–277 | Cite as

pH-Sensitive Polypeptide Conjugated with Carborane Clusters and Cyanine for NIR Bioimaging and Multi-Therapies

  • Zheng Ruan
  • Pan Yuan
  • Titao Jing
  • Tao Xing
  • Lifeng Yan


A novel pH-sensitive carborane and cyanine dye conjugated polypeptide and its micelles has been designed and synthesized for potential near infrared fluorescence imaging-guided boron neutron capture therapy (BNCT). The amphiphilic polymer we synthesized with tertiary amine as functional group could self-assemble to micelle nanoparticles at neutral pH, and responsive to acidic solution for the disassembly of the micelles for drug release. The tertiary amine sensitive induced process was observed via dynamic light scattering (DLS) and transmission electron microscopy (TEM). The efficiency of cell killing ability is studied by MTT assays and fluorescence microscope measurement, indicating a new intelligent system for potential NIR imaging-guided therapy.


pH-sensitive carborane tertiary amine imaging-guided boron neutron capture therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6034_MOESM1_ESM.pdf (331 kb)
Supporting Information


  1. (1).
    R. F. Barth, J. A. Coderre, M. G. H. Vicente, and T. E. Blue, Clin. Cancer Res., 11, 3987 (2005).CrossRefGoogle Scholar
  2. (2).
    C. Salt, A. J. Lennox, M. Takagaki, J. A. Maguire, and N. S. Hosmane, Russ. Chem. Bull., 53, 1871 (2004).CrossRefGoogle Scholar
  3. (3).
    V. N. Mitin, V. N. Kulakov, V. F. Khokhlov, I. N. Sheino, A. M. Arnopolskaya, N. G. Kozlovskaya, K. N. Zaitsev, and A. A. Portnov, Appl. Radiat. Isot., 67, S299 (2009).CrossRefGoogle Scholar
  4. (4).
    A. F. Armstrong and J. F. Valliant, Dalton Trans., 4240 (2007).Google Scholar
  5. (5).
    A. H. Soloway, W. Tjarks, B. A. Barnum, F. G. Rong, R. F. Barth, I. M. Codogni, and J. G. Wilson, Chem. Rev., 98, 1515 (1998).CrossRefGoogle Scholar
  6. (6).
    J. A. Coderre, J. C. Turcotte, K. J. Riley, P. J. Binns, O. K. Harling, and W. S. Kiger, Technol. Cancer Res. Treat., 2, 355 (2003).CrossRefGoogle Scholar
  7. (7).
    D. W. Kim, C. M. Lee, N. H. Kim, S. Y. Lee, M. Y. Lee, E. S. Choi, S. A. Park, C. Kim, H. Hwang, S. T. Lim, M. H. Sohn, and H. J. Jeong, Macromol. Res., 22, 272 (2014).CrossRefGoogle Scholar
  8. (8).
    R. F. Barth, M. G. H. Vicente, O. K. Harling, W. S. Kiger, K. J. Riley, P. J. Binns, F. M. Wagner, M. Suzuki, T. Aihara, I. Kato, and S. Kawabata, Radiat. Oncol., 7 (2012).Google Scholar
  9. (9).
    D. Alberti, A. Toppino, S. G. Crich, C. Meraldi, C. Prandi, N. Protti, S. Bortolussi, S. Altieri, S. Aime, and A. Deagostino, Org. Biomol. Chem., 12, 2457 (2014).CrossRefGoogle Scholar
  10. (10).
    L. F. Tietze, U. Griesbach, U. Bothe, H. Nakamura, and Y. Yamamoto, Chembiochem, 3, 219 (2002).CrossRefGoogle Scholar
  11. (11).
    J. Yoo and Y. Do, Dalton Trans., 4978 (2009).Google Scholar
  12. (12).
    C. Vinas, F. Teixidor, and R. Nunez, Inorg. Chim. Acta, 409, 12 (2014).CrossRefGoogle Scholar
  13. (13).
    S. Tachikawa, T. Miyoshi, H. Koganei, M. E. El-Zaria, C. Vinas, M. Suzuki, K. Ono, and H. Nakamura, Chem. Commun., 50, 12325 (2014).CrossRefGoogle Scholar
  14. (14).
    G. J. Chen, J. Y. Yang, G. Lu, P. C. Liu, Q. J. Chen, Z. W. Xie, and C. Wu, Mol. Pharmaceutics, 11, 3291 (2014).CrossRefGoogle Scholar
  15. (15).
    H. J. Xiong, D. F. Zhou, Y. X. Qi, Z. Y. Zhang, Z. G. Xie, X. S. Chen, X. B. Jing, F. B. Meng, and Y. B. Huang, Biomacromolecules, 16, 3980 (2015).CrossRefGoogle Scholar
  16. (16).
    Y. Matsumura and H. Maeda, Cancer Res., 46, 6387 (1986).Google Scholar
  17. (17).
    Y. W. Cho, Y. S. Kim, I. S. Yjm, R. W. Park, S. J. Oh, D. H. Moon, S. Y. Kim, and I. C. Kwon, Macromol. Res., 16, 15 (2008).CrossRefGoogle Scholar
  18. (18).
    Y. W. Cho, K. Kim, K. Park, and I. C. Kwon, Macromol. Res., 22, 926 (2014).CrossRefGoogle Scholar
  19. (19).
    J. M. Lee, O. H. Kim, S. E. Shim, B. H. Lee, and S. Choe, Macromol. Res., 13, 236 (2005).CrossRefGoogle Scholar
  20. (20).
    Z. Ruan, L. Liu, W. Jiang, S. Y. Li, Y. C. Wang, and L. F. Yan, Biomater. Sci-Uk, 5, 313 (2017).CrossRefGoogle Scholar
  21. (21).
    Z. Ruan, L. Liu, L. Fu, T. Xing, and L. Yan, Polym. Chem., 7, 4411 (2016).CrossRefGoogle Scholar
  22. (22).
    L. Fu, L. Liu, Z. Ruan, H. Zhang, and L. Yan, RSC Adv., 6, 40312 (2016).CrossRefGoogle Scholar
  23. (23).
    G. R. Jin, G. X. Feng, W. Qin, B. Z. Tang, B. Liu, and K. Li, Chem. Commun., 52, 2752 (2016).CrossRefGoogle Scholar
  24. (24).
    L. Y. Fu, C. Y. Sun, and L. F. Yan, ACS Appl. Mater. Interfaces, 7, 2104 (2015).CrossRefGoogle Scholar
  25. (25).
    T. Xing, X. Yang, F. Wang, B. Lai, and L. Yan, J. Mater. Chem., 22, 22290 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, iChEMUniversity of Science and Technology of ChinaAnhuiP. R. China
  2. 2.Institute of System and EngineeringChinese Academy of Engineering PhysicsMianyangP. R. China

Personalised recommendations