Macromolecular Research

, Volume 26, Issue 3, pp 233–237 | Cite as

Synthesis and Characterization of a Fluid-Like Novel Aniline Pentamer

  • Mengkui Wang
  • Jing Huang
  • Quanling Yang
  • Zhikang Liu
  • Lijie Dong
  • Shan Wang
  • Chuanxi Xiong


A fluid-like novel aniline pentamer was synthesized by oxidative coupling and chemically doped with nonylphenol polyoxyethylene ether sulfate (NPES). The chemical structure, morphology, rheological behavior and conductivity of the assynthesized aniline pentamer were investigated. Unlike conventional aniline oligomers, this aniline pentamer exhibited a fluid-like behavior in the absence of any solvent at room temperature. Moreover, the aniline pentamer fluid showed liquid crystal characteristics. Combination of the fluid-like behavior, liquid crystal characteristics and good conductivity makes the aniline pentamer a promising environmentally friendly fluid for various applications such as field-effect transistors, liquid crystal devices, electrorheological materials, corrosion protection and other devices requiring electroactivity. This work provides a facile way to synthesizing flowable aniline oligomers with liquid crystal characteristics.


aniline pentamer fluid-like liquid crystal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. B. Bourlinos, R. Herrera, N. Chalkias, D. D. Jiang, Q. Zhang, L. A. Archer, and E. P. Giannelis, Adv. Mater., 17, 234 (2005).CrossRefGoogle Scholar
  2. (2).
    R. Rodriguez, R. Herrera, L. A. Archer, and E. P. Giannelis, Adv. Mater., 20, 4353 (2008).CrossRefGoogle Scholar
  3. (3).
    S. C. Warren, M. J. Banholzer, L. S. Slaughter, E. P. Giannelis, F. J. DiSalvo, and U. B. Wiesner, J. Am. Chem. Soc., 128, 12074 (2006).CrossRefGoogle Scholar
  4. (4).
    Q. S. Feng, L. J. Dong, J. Huang, Q. Li, Y. Fan, J. Xiong, and C. Xiong, Angew. Chem. Int. Ed., 49, 9943 (2010).CrossRefGoogle Scholar
  5. (5).
    Y. Lei, C. Xiong, L. Dong, H. Guo, X. Su, J. Yao, and X. Shang, Small, 3, 1889 (2007).CrossRefGoogle Scholar
  6. (6).
    Q. Li, L. Dong, W. Deng, Q. Zhu, Y. Liu, and C. Xiong, J. Am. Chem. Soc., 131, 9148 (2009).CrossRefGoogle Scholar
  7. (7).
    J. Huang, Q. Li, D. Li, Y. Wang, L. Dong, H. Xie, and C. Xiong, Langmuir, 29, 10223 (2013).CrossRefGoogle Scholar
  8. (8).
    A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Herrera, S. H. Anastasiadis, D. Petridis, and E. P. Giannelis, Small, 2, 513 (2006).CrossRefGoogle Scholar
  9. (9).
    D. Kim, Y. Kim, and J. Cho, Chem. Mater., 25, 3834 (2013).CrossRefGoogle Scholar
  10. (10).
    S. S., Moganty, N. Jayaprakash, J. L. Nugent, J. Shen, and L. A. Archer, Angew. Chem., 122, 9344 (2010).CrossRefGoogle Scholar
  11. (11).
    A. Moscatelli, Nat. Nanotechnol., 8, 888 (2013).CrossRefGoogle Scholar
  12. (12).
    M. Hosseini, M. M. Momeni, and M. Faraji, J. Mater. Sci., 45, 2365 (2010).CrossRefGoogle Scholar
  13. (13).
    J. Chen, Y. Liu, W. Li, C. Wu, L. Xu, and H. Yang, J. Mater. Sci., 50, 5466 (2015).CrossRefGoogle Scholar
  14. (14).
    D. Chao, X. Lu, J. Chen, X. Liu, W. Zhang, and Y. Wei, Polymer, 47, 2643 (2006).CrossRefGoogle Scholar
  15. (15).
    X. Yan, J. Chen, J. Yang, Q. Xue, and P. Miele, ACS Appl. Mater. Interfaces, 2, 2521 (2010).CrossRefGoogle Scholar
  16. (16).
    X. Zhou, T. Wu, B. Hu, G. Yang, and B. Han, Chem. Comm., 46, 3663 (2010).CrossRefGoogle Scholar
  17. (17).
    J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, Chem-Eur. J., 10, 1314 (2004).CrossRefGoogle Scholar
  18. (18).
    G. Ćirić-Marjanović, Synth. Met., 177, 1 (2013).CrossRefGoogle Scholar
  19. (19).
    H. F. Cui, L. Du, P. B. Guo, B. Zhu, J. H. Luong, J. Power Sources, 283, 46 (2015).CrossRefGoogle Scholar
  20. (20).
    E. Harlev, T. Gulakhmedova, I. Rubinovich, and G. Aizenshtein, Adv. Mater., 8, 994 (1996).CrossRefGoogle Scholar
  21. (21).
    H. Goto, M. Okuda, T. Oohazama, and K. Akagi, Synth. Met., 102, 1293 (1999).CrossRefGoogle Scholar
  22. (22).
    H. Goto, K. Akagi, and K. Itoh, Synth. Met., 117, 91 (2001).CrossRefGoogle Scholar
  23. (23).
    F. B. Meng, N. Y. Zhou, C. Du, H. M. Gao, and X. Z. He, J. Appl. Polym. Sci., 130, 3395 (2013).CrossRefGoogle Scholar
  24. (24).
    L. Gu, S. Liu, H. Zhao, and H. Yu, RSC Adv., 5, 56011 (2015).CrossRefGoogle Scholar
  25. (25).
    Y. Liu, J. Hu, X. Zhuang, P. Zhang, Y. Wei, X. Wang, and X. Chen, Macromol. Biosci., 12, 241 (2012).CrossRefGoogle Scholar
  26. (26).
    S. C. Lin, C. S. Wu, J. M. Yeh, and Y. L. Liu, Polym. Chem., 5, 4235 (2014).CrossRefGoogle Scholar
  27. (27).
    C. T. Kuo and S. Z. Weng, Polym. Adv. Technol., 11, 716 (2000).CrossRefGoogle Scholar
  28. (28).
    Y. Guo, A. Mylonakis, Z. Zhang, P. I. Lelkes, K. Levon, S. Li, and Y. Wei, Macromolecules, 40, 2721 (2007).CrossRefGoogle Scholar
  29. (29).
    L. Huang, J. Hu, L. Lang, X. Wang, P. Zhang, X. Jing, and Y. Wei, Biomaterials, 28, 1741 (2007).CrossRefGoogle Scholar
  30. (30).
    M. Mrlik, M. Sedlacik, V. Pavlinek, P. Bober, M. Trchová, J. Stejskal, and P. Saha, Colloid Polym. Sci., 291, 2079 (2013).CrossRefGoogle Scholar
  31. (31).
    Z. Wei and C. F. Faul, Macromol. Rapid Commun., 29, 280 (2008).CrossRefGoogle Scholar
  32. (32).
    B. Hong, A. Chremos, and A. Z. Panagiotopoulos, Faraday Discuss., 154, 29 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and EngineeringWuhan University of TechnologyWuhanP. R. China
  2. 2.School of Materials Science and EngineeringWuhan Textile UniversityWuhanP. R. China

Personalised recommendations