Macromolecular Research

, Volume 26, Issue 3, pp 211–214 | Cite as

Effect of Surface Modification on Impact Strength and Flexural Strength of Poly(lactic acid)/Silicon Carbide Nanocomposites

  • Fan-Long Jin
  • Heng Zhang
  • Shan-Shan Yao
  • Soo-Jin Park


Silicon carbide (SiC) nanoparticles were surface modified using a silane coupling agent, and their properties were characterized using Fourier transform infrared, thermogravimetric analysis, and scanning electron microscope. Biodegradable poly(lactic acid) (PLA) composites were manufactured from PLA and SiC nanoparticles using a solution-blending method. The effect of SiC surface modification on the impact strength, flexural strength, and morphology of the PLA/SiC nanocomposites was studied. The impact strength of the PLA/surface-modified SiC (S-SiC) nanocomposites improved remarkably with increasing S-SiC content and scanning electron micrographs revealed that the PLA/S-SiC nanocomposites possessed a more ductile fracture surface than neat PLA or the PLA/SiC nanocomposites.


poly(lactic acid) (PLA) silicon carbide (SiC) nanocomposites surface modification impact strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    F. H. Panahi, S. J. Peighambardoust, S. Davaran, and R. Salehi, Polymer, 117, 117 (2017).CrossRefGoogle Scholar
  2. (2).
    H. Lee and I. J. Chin, Macromol. Res., 24, 515 (2016).CrossRefGoogle Scholar
  3. (3).
    M. A. Ghalia and Y. Dahman, Polym. Test., 61, 114 (2017).CrossRefGoogle Scholar
  4. (4).
    J. W. Chon, I. K. Jang, S. W. Suh, I. K. Chung, S. M. Chung, and D. J. Chung, Macromol. Res., 24, 37 (2016).CrossRefGoogle Scholar
  5. (5).
    M. Shabanian, M. Khoobi, F. Hemati, H. A. Khonakdar, S. Sadatebrahimi, U. Wagenknecht, and A. Shafiee, J. Ind. Eng. Chem., 24, 211 (2015).CrossRefGoogle Scholar
  6. (6).
    M. Nofar, A. Tabatabaei, H. Sojoudiasli, C. B. Park, P. J. Carreau, M. C. Heuzey, and M. R. Kamal, Eur. Polym. J., 90, 231 (2017).CrossRefGoogle Scholar
  7. (7).
    Á. Csikós, G. Faludi, A. Domján, K. Renner, J. Móczó, and B. Pukánszky, Eur. Polym. J., 68, 592 (2015).CrossRefGoogle Scholar
  8. (8).
    M. Maroufkhani, A. Katbab, W. Liu, and J. Zhang, Polymer, 115, 37 (2017).CrossRefGoogle Scholar
  9. (9).
    M. P. Arrieta, E. Fortunati, F. Dominici, J. López, and J. M. Kenny, Carbohyd. Polym., 121, 265 (2015).CrossRefGoogle Scholar
  10. (10).
    L. Lin, C. Deng, G. P. Lin, and Y. Z. Wang, Ind. Eng. Chem. Res., 54, 5643 (2015).CrossRefGoogle Scholar
  11. (11).
    M. Maroufkhani, A. Katbab, W. Liu, and J. Zhang, Polymer, 115, 37 (2017).CrossRefGoogle Scholar
  12. (12).
    H. Liu, W. Song, F. Chen, L. Guo, and J. Zhang, Macromolecules, 44, 1513 (2011).CrossRefGoogle Scholar
  13. (13).
    L. Wang, W. M. Gramlich, and D. J. Gardner, Polymer, 114, 242 (2017).CrossRefGoogle Scholar
  14. (14).
    N. Wu and H. Zhang, Mater. Lett., 192, 17 (2017).CrossRefGoogle Scholar
  15. (15).
    X. Yang, J. Clénet, H. Xu, K. Odelius, and M. Hakkarainen, Macromolecules, 48, 2509 (2015).CrossRefGoogle Scholar
  16. (16).
    R. Scaffaro, L. Botta, A. Maio, and G. Gallo, Compos. Part B, 109, 138 (2017).CrossRefGoogle Scholar
  17. (17).
    Y. Gao, O. T. Picot, E. Bilotti, and T. Peijs, Eur. Polym. J., 86, 117 (2017).CrossRefGoogle Scholar
  18. (18).
    K. Piekarska, P. Sowinski, E. Piorkowska, M. Haque, and M. Pracella, Compos. Part A, 82, 34 (2016).CrossRefGoogle Scholar
  19. (19).
    M. R. Aghjeh, V. Asadi, P. Mehdijabbar, H. A. Khonakdar, and S. H. Jafari, Compos. Part B, 86, 273 (2016).CrossRefGoogle Scholar
  20. (20).
    M. Ramos, E. Fortunati, M. Peltzer, A. Jimenez, J. M. Kenny, and M. C. Garrigós, Polym. Degrad. Stab., 132, 2 (2016).CrossRefGoogle Scholar
  21. (21).
    M. Dinari and A. Haghighi, Prog. Org. Coat., 110, 24 (2017).CrossRefGoogle Scholar
  22. (22).
    Y. Qi, Q. Luo, J. Shen, L. Zheng, J. Zhou, and W. Chen, Appl. Surf. Sci., 414, 147 (2017).CrossRefGoogle Scholar
  23. (23).
    I. Jang, K. H. Shin, I. Yang, H. Kim, J. Kim, W. H. Kim, S. W. Jeon, and J. P. Kim, Colloid Surf. A, 518, 64 (2017).CrossRefGoogle Scholar
  24. (24).
    C. Pan, K. Kou, Q. Jia, Y. Zhang, G. Wu, and T. Ji, Compos. Part B, 111, 83 (2017).CrossRefGoogle Scholar
  25. (25).
    N. Graupner, D. Labonte, and J. Müssig, Compos Part A, 98, 218 (2017).CrossRefGoogle Scholar
  26. (26).
    F. L. Jin, Q. Q. Pang, T. Y. Zhang, and S. J. Park, J. Ind. Eng. Chem., 32, 77 (2015).CrossRefGoogle Scholar
  27. (27).
    L. Wang, W. M. Gramlich, D. J. Gardner, Polymer, 114, 242 (2017).CrossRefGoogle Scholar
  28. (28).
    S. J. Park and F. L. Jin, Polym. Degrad. Stab., 86, 515 (2004).CrossRefGoogle Scholar
  29. (29).
    S. J. Park, F. L. Jin, and J. R. Lee, Macromol. Chem. Phys., 205, 2048, (2004).CrossRefGoogle Scholar
  30. (30).
    M. Shabanian, M. Hajibeygi, K. Hedayati, M. Khaleghi, and H. A. Khonakdar, Mater. Des., 110, 811 (2016).CrossRefGoogle Scholar
  31. (31).
    F. L. Jin and S. J. Park, Mater. Sci. Eng. A, 475, 190 (2008).CrossRefGoogle Scholar
  32. (32).
    M. Foruzanmehr, P. Y. Vuillaume, S. Elkoun, and M. Robert, Mater. Des., 106, 295 (2016).CrossRefGoogle Scholar
  33. (33).
    F. L. Jin and S. J. Park, J. Polym. Sci., Part B: Polym. Phys., 44, 3348 (2006).CrossRefGoogle Scholar
  34. (34).
    H. Ebadi-Dehaghani, H. A. Khonakdar, M. Barikani, and S. H. Jafari, Compos. Part B, 69, 133 (2015).CrossRefGoogle Scholar
  35. (35).
    S. J. Park, F. L. Jin, and J. S. Shin, Mater. Sci. Eng. A, 390, 240 (2005).CrossRefGoogle Scholar
  36. (36).
    S. S. Yao, Q. Q. Pang, R. Song, F. L. Jin, and S. J. Park, Macromol. Res., 24, 961 (2016).CrossRefGoogle Scholar
  37. (37).
    M. Bulota and T. Budtova, Compos. Part A, 73, 109 (2015).CrossRefGoogle Scholar
  38. (38).
    S. J. Park, F. L. Jin, and J. R. Lee, Mater. Sci. Eng. A, 374, 109 (2004).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer MaterialsJilin Institute of Chemical TechnologyJilin CityP. R. China
  2. 2.Department of ChemistryInha UniversityNam-gu, IncheonKorea

Personalised recommendations