Advertisement

Macromolecular Research

, Volume 26, Issue 3, pp 215–225 | Cite as

Preparation, Structure and Performance of Poly(lactic acid)/Poly(lactic acid)-γ-Cyclodextrin Inclusion Complex-Poly(glycidyl methacrylate) Composites

  • Ya Li
  • Weijun Zhen
Article
  • 84 Downloads

Abstract

Poly(lactic acid)-γ-cyclodextrin inclusion complex-poly(glycidyl methacrylate) (PLA-IC-PGMA) was synthesized with poly(lactic acid) (PLA) and γ-cyclodextrin inclusion complex via surface initiated atom transfer radical polymerization. Then, the PLA/PLA-IC-PGMA composite was prepared by melt blending using PLA-IC-PGMA as additive. Structure and properties of PLA-IC-PGMA and PLA/PLA-IC-PGMA composites were confirmed by X-ray diffraction patterns, 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectra, X-ray photoelectron spectroscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), polarized optical microscopy, rheological analysis, etc. Mechanical testing analysis showed that the tensile strength, elongation at break, and impact strength of PLA/(1 wt%) PLA-IC-PGMA composites were improved by 2.3%, 10.8%, and 52.5%, respectively, compared with pure PLA. Scanning electron microscopy analysis demonstrated that the toughness of PLA/PLA-IC-PGMA composite was improved. The results of DSC and TG showed that the cold crystallization peak of PLA composites after the addition of PLA-IC-PGMA disappeared, and its crystallinity was increased by 25% compared with PLA. Furthermore, the thermal stability of PLA/PLA-IC-PGMA composite was improved. Dynamic mechanical analysis showed that the glass transition temperature of PLA/PLA-IC-PGMA composites decreased by 8 °C, which indicated that the flexibility of the chain of PLA was greatly improved. Therefore, the addition of PLA-IC-PGMA improved the comprehensive performance of PLA.

Keywords

poly(lactic acid) γ-cyclodextrin inclusion compound surface initiated atom transfer radical polymerization performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. I. Kim, B. R. Lee, I. L. Jin, and C. H. Mun, Macromol. Res., 22, 1229 (2014).CrossRefGoogle Scholar
  2. (2).
    J. H. Kim, T. K. Ryu, S. K. Moon, and J. S. Lee, Macromol. Res., 23, 501 (2015).CrossRefGoogle Scholar
  3. (3).
    M. Zhou, P. Zhou, P. Xiong, and X. Qian, Macromol. Res., 23, 231 (2015).CrossRefGoogle Scholar
  4. (4).
    J. T. Yoon, Y. G. Jeong, and S. C. Lee, Polym. Adv. Technol., 20, 631 (2009).CrossRefGoogle Scholar
  5. (5).
    L. A. Utracki, M. Sepehr, and E. Boccaleri, Polym. Adv. Technol., 18, 1 (2007).CrossRefGoogle Scholar
  6. (6).
    Z. X. Jing, X. T. Shi, and G. C. Zhang, Polym. Adv. Technol., 27, 1108 (2016).CrossRefGoogle Scholar
  7. (7).
    Y. H. Cai, S. F. Yan, Y. Q. Fan, Z. Y. Yu, X. S. Chen, and J. B. Yin, Iran. Polym. J., 21, 435 (2012).CrossRefGoogle Scholar
  8. (8).
    J. Odent, J. M. Raquez, P. Leclere, F. Lauro, and P. Dubois, Polym. Adv. Technol., 26, 814 (2015).CrossRefGoogle Scholar
  9. (9).
    R. Zhang, Y. M. Wang, K. J. Wang, G. Q. Zheng, Q. Li, and C. Y. Shen, Polym. Bull., 70, 195 (2013).CrossRefGoogle Scholar
  10. (10).
    T. Dong, K. Shin, B. Zhu, and Y. Inoue, Macromolecules, 39, 2427 (2006).CrossRefGoogle Scholar
  11. (11).
    Y. F. Zhou, Y. N. Song, W. J. Zhen, and W. T. Wang, Macromol. Res., 23, 1103 (2015).CrossRefGoogle Scholar
  12. (12).
    A. Harada, J. Li, and M. Kamachi, Nature, 356, 325 (1992).CrossRefGoogle Scholar
  13. (13).
    T. Dong, W. Kai, and Y. Inoue, Macromolecules, 40, 8285 (2007).CrossRefGoogle Scholar
  14. (14).
    Y. L. Feng, Y. X. Hu, J. H. Yin, G. Y. Zhao, and W. Jiang, Polym. Eng. Sci., 53, 389 (2013).CrossRefGoogle Scholar
  15. (15).
    Z. Z. Su, Q. Y. Li, Y. J. Liu, G. H. Liu, and C. F. Wu, Eur. Polym. J., 45, 2428 (2009).CrossRefGoogle Scholar
  16. (16).
    W. Y. Dong, M. F. He, H. T. Wang, F. L. Ren, J. Q. Zhang, X. W. Zhao, and Y. J. Li, ACS Sustain. Chem. Eng., 3, 2542 (2015).CrossRefGoogle Scholar
  17. (17).
    G. Y. Shi, P. Zou, and C. Y. Pan, J. Polym. Sci., Part A: Polym. Chem., 46, 5580 (2008).CrossRefGoogle Scholar
  18. (18).
    A. Plichta, T. Jaskulski, P. Lisowska, K. Macios, and A. Kundys, Polymer, 72, 307 (2015).CrossRefGoogle Scholar
  19. (19).
    J. Shen, W. Jiang, Y. Liu, R. P. Wei, Y. Zhong, L. L. Li, G. Xue, and X. N. Liu, J. Thermoplast. Compos. Mater., 27, 1074 (2014).CrossRefGoogle Scholar
  20. (20).
    H. H. Hu, Y. Zhang, B. Yan, J. Liu, and H. Z. Yan, Chin. Plast. Ind., 11, 95 (2013).Google Scholar
  21. (21).
    M. S. San Román, M. J. Holgado, B. Salinas, and V. Rives, Appl. Clay Sci., 71, 1 (2013).CrossRefGoogle Scholar
  22. (22).
    T. Dong, W. Kai, and Y. Inoue, Macromolecules, 40, 8285 (2007).CrossRefGoogle Scholar
  23. (23).
    T. Dong, T. Mori, T. Aoyama, and Y. Inoue, Carbohydr. Polym., 80, 387 (2010).CrossRefGoogle Scholar
  24. (24).
    Y. Ohya, S. Takamido, K. Nagahama, T. Ouchi, T. Ooya, R. Katoono, and N. Yui, Macromolecules, 40, 6441 (2007).CrossRefGoogle Scholar
  25. (25).
    J. Li, B. Chen, X. Wang, and S. H. Goh, Polymer, 45, 1777 (2004).CrossRefGoogle Scholar
  26. (26).
    P. R. Birkett, Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem., 99, 431 (2003).CrossRefGoogle Scholar
  27. (27).
    J. Li, Y. Mai, D. Yan, and Q. Chen, Colloid Polym. Sci., 281, 267 (2003).CrossRefGoogle Scholar
  28. (28).
    S. A. S. Tabassi, F. S. M. Tekie, F. Hadizadeh, R. Rashid, E. Khodaverdi, and S. A. Mohajeri, J. Sol-Gel Sci. Technol., 69, 166 (2014).CrossRefGoogle Scholar
  29. (29).
    F. J. Xu, Z. X. Zhang, Y. Ping, J. Li, E. T. Kang, and K. G. Neoh, Biomacromolecules, 10, 285 (2009).CrossRefGoogle Scholar
  30. (30).
    F. J. Xu, H. Li, J. Li, Z. X. Zhang, E. T. Kang, and K. G. Neoh, Biomaterials, 29, 3023 (2008).CrossRefGoogle Scholar
  31. (31).
    Y. Yamamoto, and Y. Inoue, J. Carbohydr. Chem., 8, 29 (1989).CrossRefGoogle Scholar
  32. (32).
    M. M. Fan, Z. J. Yu, H. Y. Luo, S. Zhang, and B. J. Li, Macromol. Rapid Commun., 30, 897 (2009).CrossRefGoogle Scholar
  33. (33).
    H. Okumura, Y. Kawaguchi, and A. Harada, Macromolecules, 34, 6338 (2001).CrossRefGoogle Scholar
  34. (34).
    W. Yuan, and J. Ren, J. Polym. Sci. Part A: Polym. Chem., 47, 2754 (2009).CrossRefGoogle Scholar
  35. (35).
    D. J. Haloi, P. Mandal, and N. K. Singha, J. Macromol. Sci. A, 50, 121 (2013).CrossRefGoogle Scholar
  36. (36).
    Y. Xu, J. Yuan, and A. H. E. Müller, Polymer, 50, 5933 (2009).CrossRefGoogle Scholar
  37. (37).
    D. M. Xie, K. S. Yang, and W. X. Sun, Curr. Appl. Phys., 7, 15 (2007).CrossRefGoogle Scholar
  38. (38).
    T. Dong, Y. He, B. Zhu, K. M. Shin, and Y. Inoue, Macromolecules, 38, 7736 (2005).CrossRefGoogle Scholar
  39. (39).
    Y. He, and Y. Inoue, Polym. Int., 49, 623 (2000).CrossRefGoogle Scholar
  40. (40).
    T. Dong, Y. He, K. Shin, and Y. Inoue, Macromol. Biosci., 4, 1084 (2004).CrossRefGoogle Scholar
  41. (41).
    X. T. Hu, B. X. Wei, H. Y. Li, C. S. Wu, Y. X. Bai, X. M. Xu, Z. Y. Jin, and Y. Q. Tian, Carbohydr. Polym., 90, 1193 (2012).CrossRefGoogle Scholar
  42. (42).
    C. F. Liu, Z. F. Zhou, H. Shao, S. Yang, W. B. Xu, and S. M. Yu, Polym. Mater. Sci. Eng., 23, 211 (2007).Google Scholar
  43. (43).
    W. J. Zhen and W. T. Wang, Polym. Bull., 73, 1015 (2016).CrossRefGoogle Scholar
  44. (44).
    W. J. Zhen, W. T. Wang, and J. Li, Polym. Mater. Sci. Eng., 31, 152 (2015).Google Scholar
  45. (45).
    B. Li, F. X. Dong, X. L. Wang, J. Yang, D. Y. Wang, and Y. Z. Wang, Eur. Polym. J., 11, 2996 (2009).CrossRefGoogle Scholar
  46. (46).
    W. S. Chow and S. S. Neoh, Polym-Plast Technol. Eng., 49, 62 (2009).CrossRefGoogle Scholar
  47. (47).
    W. T. Wang, W. J. Zhen, S. Z. Bian, and X. Xi, Appl. Clay Sci., 109, 136 (2015).CrossRefGoogle Scholar
  48. (48).
    D. Garlotta, J. Polym. Environ., 9, 63 (2001).CrossRefGoogle Scholar
  49. (49).
    C. H. Tsou, M. C. Suen, W. H. Yao, J. T. Yeh, C. S. Wu, C. Y. Tsou, S. H. Chiu, J. C. Chen, R. Y. Wang, S. M. Lin, W. S. Hung, M. D. Guzman, C. C. Hu, and K. R. Lee, Materials, 8, 5617 (2014).CrossRefGoogle Scholar
  50. (50).
    Z. X. Jing, X. T. Shi, G. C. Zhang, and J. Li, Polym. Adv. Technol., 26, 528 (2015).CrossRefGoogle Scholar
  51. (51).
    S. S. Ray, K. Yamada, M. Okamoto, and K. Ueda, Macromol. Mater. Eng., 3, 203 (2003).CrossRefGoogle Scholar
  52. (52).
    S. Djellali, T. Sadoun, N. Haddaoui, and A. Bergeret, Polym. Bull., 72, 1177 (2015).CrossRefGoogle Scholar
  53. (53).
    S. L. Yang, Z. H. Wu, and W. Yang, Chin. Plast. Ind., 36, 57 (2008).Google Scholar
  54. (54).
    L. Cui, Z. C. Wang, and P. Zhu, J. Macromol. Sci., Part B: Phys., 52, 674 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous RegionXinjiang UniversityUrumqiP. R. China

Personalised recommendations