Skip to main content
Log in

Graphene-incorporated nanofibrous hybrid membrane with enhanced properties

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Graphene has been highlighted as an additive material to ameliorate functions of biomaterials due to its unique structure and superelasticity. In this study, graphene at different concentration (up to 10%) was incorporated into a hybrid membrane composed of chitosan and silica xerogel to enhance the functionality of the hybrid membrane for guided bone regeneration (GBR) through in situ sol-gel technique. The effect of graphene incorporation was evaluated in terms of morphology, mechanical property, and biological property. In SEM observation, graphene (G)-incorporated membranes showed macroporous structure and nanofibrous microstructure which could allow protein to attach onto membrane more efficiently. The hybrid membrane containing 10% graphene was found to have highly porous and nanofibrous structure with the highest level of protein adsorption. These G-incorporated membranes also showed improved mechanical properties compared to hybrid membrane only (control) in wet state. However, the tensile strength and elongation were decreased when 10% graphene was incorporated into the hybrid membrane. Both in vitro and in vivo tests confirmed that G-incorporated membranes had similar biological properties to those of osteogenic hybrid membrane with excellent GBR ability. These findings demonstrate that proper amount of graphene could be added to hybrid membrane to increase loading capacity of biomolecules for guided bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Retzepi and N. Donos, Clin. Oral Implants Res., 21, 567 (2010).

    Article  Google Scholar 

  2. M. C. Bottino, V. Thomas, G. Schmidt, Y. K. Vohra, T. M. Chu, M. J. Kowolik, and G. M. Janowski, Dent. Mater., 28, 703 (2012).

    Article  CAS  Google Scholar 

  3. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006).

    Article  CAS  Google Scholar 

  4. D. Barun, K. E. Prasad, U. Ramamurty, and C. N. R. Rao, Nanotechnology, 20, 125705 (2009).

    Article  Google Scholar 

  5. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small, 7, 1876 (2011).

    Article  CAS  Google Scholar 

  6. B. S. Harrison and A. Atala, Biomaterials, 28, 344 (2007).

    Article  CAS  Google Scholar 

  7. Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, Trends Biotechnol., 29, 205 (2011).

    Article  Google Scholar 

  8. V. Castranova, P. A. Schulte, and R. D. Zumwalde, Acc. Chem. Res., 46, 642 (2012).

    Article  Google Scholar 

  9. E.-J. Lee, D.-S. Shin, H.-E. Kim, H.-W. Kim, Y.-H. Koh, and J.-H. Jang, Biomaterials, 30, 743 (2009).

    Article  CAS  Google Scholar 

  10. S.-A. Oh, S.-H. Kim, J.-E. Won, J.-J. Kim, U. S. Shin, and H.-W. Kim, J. Tissue Eng., 2010, 475260 (2010).

    Article  Google Scholar 

  11. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Polymer, 52, 5 (2011).

    Article  CAS  Google Scholar 

  12. S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, Compos. Part B, 39, 933 (2008).

    Article  Google Scholar 

  13. K. Nakanishi, T. Sakiyama, and K. Imamura, J. Biosci. Bioeng., 91, 233 (2001).

    Article  CAS  Google Scholar 

  14. K. M. Woo, V. J. Chen, and P. X. Ma, J. Biomed. Mater. Res. A, 67A, 531 (2003).

    Article  CAS  Google Scholar 

  15. T. Kitajima, H. Terai, and Y. Ito, Biomaterials, 28, 1989 (2007).

    Article  CAS  Google Scholar 

  16. E.-J. Lee and H.-E. Kim, Mater. Sci. Eng. C, 59, 339 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was conducted by the research fund of Dankook University (R-2015-00941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Jung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, U.S., Park, JS., Oh, JS. et al. Graphene-incorporated nanofibrous hybrid membrane with enhanced properties. Macromol. Res. 25, 1057–1062 (2017). https://doi.org/10.1007/s13233-017-5151-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5151-4

Keywords

Navigation