Macromolecular Research

, Volume 25, Issue 9, pp 924–930 | Cite as

Proton-conducting polymers derived from radiation grafting and sulphonation of poly(tetraflouroethylene-perflourovinyl ether) film with three rare-earth elements

  • Mohamed Mohamady Ghobashy
  • Ahmed M. Elbarbary
  • Naeem M. El-Sawy
  • Hany M. Hosni
Article
  • 61 Downloads

Abstract

Progress in the area of proton conducting polymer electrolyte membranes is closely with the enhancing of polymer electrolyte membrane fuel cells. Fluorinated polymers, e.g. poly(tetraflouroethylene-perflourovinyl ether) (PFA) film is largely driven by their thermal properties. In this article PFA film was developments to be suitable as proton conducting polymer electrolyte membranes. The grafting of acrylic acid (80%) onto the PFA film achieved by irradiation techniques and PFA-COOH was obtained. In addition, to synthesis of completely a new protonconducting sulfonated polymer ionomers this could be acheived by sequences of chemical modification steps. PFA-COOH has been anilination and sulfonated to a sufficient ionomers formation and complexion with the three rare-earth elements (Li, Cs, and Sr). After that the obtained PFA-CO-NH-ph-SO3M contains a sufficient equilibrium concentration of protons in a wet atmosphere to show useful proton conduction at ambient temperatures. The sulfonated polymers containing 63 mol% sulfonic acid, and characterized by FTIR-ATR and SEM The results show that PFACO-NH-ph-SO3M wet film showed a high proton-conductivity in water (10-3 Scm-1) rather than methanol (10-6 Scm-1) in order Li+> Sr++>Cs+. This approach has interesting potential for smart thin film materials and offers also the possibility to be used in sensors and fuel cells provided that the electrolyte film thickness is in the micrometre range.

Keywords

proton conductivity electrolyte poly(tetraflouroethylene-perflourovinyl ether) fuel cell sulfonation earth element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. Jannasch, Curr. Opin. Colloid Interface Sci., 8, 96 (2003).CrossRefGoogle Scholar
  2. (2).
    P. Costamanga and S. Srinivasan, J. Power Sources, 102, 242 (2001).CrossRefGoogle Scholar
  3. (3).
    J. W. Ha and S. Park, Macromol. Res., 25, 1, DOI 10.1007/s13233-017-5008-x (2017).CrossRefGoogle Scholar
  4. (4).
    A. Asatekin, M. C. Barr, S. H. Baxamusa, K. K. S. Lau, W. Tenhaeff, J. Xu, and K. K. Gleason, Mater. Today, 13, 26 (2010).CrossRefGoogle Scholar
  5. (5).
    M. M. Ghobashy and M. R. Khafaga, J. Supercond. Nov. Magn., 30, 401 (2016).CrossRefGoogle Scholar
  6. (6).
    R. O. Mazzei, E. Smolko, A. Torres, D. Tadey, C. Rocco, L. Gizzi, and S. Strangis, Radiat. Phys. Chem., 64, 149 (2002).CrossRefGoogle Scholar
  7. (7).
    M. M. Ghobashy, Ultrason. Sonochem., 37, 529 (2017).CrossRefGoogle Scholar
  8. (8).
    N. M. El-Sawy, H. A. Abd El-Rehim, and A. M. Elbarbary, Adv. Polym. Technol., 30, 21 (2011).CrossRefGoogle Scholar
  9. (9).
    S. A. Kang, J. Shin, G. Fei, B. S. Ko, C. Y. Kim, Y. C. Nho, and P. H. Kang, J. Ind. Eng. Chem., 15, 516 (2009).CrossRefGoogle Scholar
  10. (10).
    N. M. El-Sawy and F. A. Al-Sagheer, Polym. Int., 47, 324 (1998).CrossRefGoogle Scholar
  11. (11).
    R. L. Thankamony, M. G. Lee, K. Kim, J. D. Hong, T. H. Kim, H. J. Lee, and Y. B. Lim, Macromol. Res., 18, 992 (2010).CrossRefGoogle Scholar
  12. (12).
    S. W. Kang, S. K. Choi, S. S. Hwang, K. Y. Baek, and H. M. Choi, Macromol. Res., 17, 455 (2009).CrossRefGoogle Scholar
  13. (13).
    O. Savadogo, J. New Mater. Electrochem. Syst., 1, 47 (1998).Google Scholar
  14. (14).
    M. E. Wright, B. J. Petteys, A. J. Guenthner, S. Fallis, G. R. Yandek, S. J. Tomczak, T. K. Minton, and A. Brunsvold, Macromolecules, 39, 4710 (2006).CrossRefGoogle Scholar
  15. (15).
    M.-H. Hung and R. R. Burch, J. Appl. Polym. Sci., 55, 549 (1995).CrossRefGoogle Scholar
  16. (16).
    M. Eberhardt, R. Mruk, R. Zentel, and P. Théato, Eur. Polym. J., 41, 1569 (2005).CrossRefGoogle Scholar
  17. (17).
    I. Noh, S. L. Goodman, and J. A. Hubbell, J. Biomater. Sci. Polym. Ed., 9, 407 (1998).CrossRefGoogle Scholar
  18. (18).
    H. Liu, S. Yang, S. Wang, J. Fang, L. Jiang, and G. Sun, J. Membr. Sci., 369, 277 (2011).CrossRefGoogle Scholar
  19. (19).
    J. H. Shin, B. J. Privett, J. M. Kita, R. M. Wightman, and M. H. Schoenfisch, Anal. Chem., 80, 6850, DOI 10.1021/ac800185x (2008).CrossRefGoogle Scholar
  20. (20).
    A. Kyrychenko, M. V. Rodnin, M. Vargas-Uribe, S. K. Sharma, G. Durand, B. Pucci, J.-L. Popot, and A. S. Ladokhin, Biochim. Biophys. Acta (BBA)-Biomembranes, 1818, 1006 (2012).CrossRefGoogle Scholar
  21. (21).
    T. Xu and J. Yang, J. Nanomater., 2012, Article ID 275637 (2012).Google Scholar
  22. (22).
    N. Cennamo, D. Massarotti, R. Galatus, L. Conte, and L. Zeni, Sensors, 13, 721 (2013).CrossRefGoogle Scholar
  23. (23).
    Z. M. Tahir, E. C. Alocilja, and D. L. Grooms, Biosens. Bioelectron., 20, 1690 (2005).CrossRefGoogle Scholar
  24. (24).
    X. Yu, Y. Li, N. Zhu, Q. Yang, and K. Kalantar-zadeh, Nanotechnology, 18, 015201 (2006).CrossRefGoogle Scholar
  25. (25).
    E. T. Kang, K. L. Tan, K. Kato, Y. Uyama, and Y. Ikada, Macromolecules, 29, 6872 (1996).CrossRefGoogle Scholar
  26. (26).
    A. M. Elbarbary and M. M. Ghobashy, Carbohydr. Polym., 162, 16 (2017).CrossRefGoogle Scholar
  27. (27).
    M. M. Ghobashy and M. A. Elhady, Radiat. Phys. Chem., 134, 47 (2017).CrossRefGoogle Scholar
  28. (28).
    A. E. Ali, H. A. A. El-Rehiem, E. A. Hegazy, and M. M. Ghobashy, J. Macromol. Sci., Part A: Pure Appl. Chem., 44, 91 (2007).CrossRefGoogle Scholar
  29. (29).
    N. M. El-Sawy and A. M. Elbarbary, J. Macromol. Sci., Part A: Pure Appl. Chem., 49, 207 (2012).CrossRefGoogle Scholar
  30. (30).
    M. M. Ghobashy and G. Bassioni, Adv. Polym. Technol., doi: 10.1002/adv.21870 (2017).Google Scholar
  31. (31).
    M. M. Ghobashy, A. Awad, M. A. Elhady, and A. M Elbarbary, Cogent Chem., 3, 1328770 (2017).Google Scholar
  32. (32).
    M. M. Ghobashy, A. M. Abdel Reheem, and N. A. Mazied, Int. Polym. Process., 32, 2, 174 (2017).CrossRefGoogle Scholar
  33. (33).
    M. M. Ghobashy and E. Khozemey, Adv. Polym. Technol., DOI: 10.1002/adv.21781(2016).Google Scholar
  34. (34).
    M. M. Nasef, H. Saidi, and K. Z. M. Dahlan, Radiat. Phys. Chem., 68, 875 (2003).CrossRefGoogle Scholar
  35. (35).
    A. S. G. Magalhães, M. P. A. Neto, M. N. Bezerra, N. M. P. S. Ricardo, and J. P. A. Feitosa, Quím. Nova, 35, 1464 (2012).CrossRefGoogle Scholar
  36. (36).
    F. Müller, C. A. Ferreira, L. Franco, J. Puiggalí, C. Alemán, and E. Armelin, J. Phys. Chem. B, 116, 11767 (2012).CrossRefGoogle Scholar
  37. (37).
    K. G. R. Pachler, F. Matlok, and H. U. Gremlich, Merck FT-IR Atlas, VCH Verlagsgesellschaft mbH, Weinheim, 1988.Google Scholar
  38. (38).
    M. Gil, X. Ji, X. Li, H. Na, J. E. Hampsey, and Y. Lu, J. Membr. Sci., 234, 75 (2004).CrossRefGoogle Scholar
  39. (39).
    I. Rivera, A. Kumar, N. Ortega, R. S. Katiyar, and S. Lushnikov, Solid StateCommun., 149, 172 (2009).Google Scholar
  40. (40).
    A. S. Riad, M. T. Korayem, and T. G. Abdel-Malik, Physica B: Condensed Matter, 270, 140 (1999).CrossRefGoogle Scholar
  41. (41).
    R. R. Heikes and W. D. Johnston, J. Chem. Phys., 26, 582 (1957).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Mohamed Mohamady Ghobashy
    • 1
  • Ahmed M. Elbarbary
    • 1
  • Naeem M. El-Sawy
    • 1
  • Hany M. Hosni
    • 2
  1. 1.Radiation Research of Polymer Chemistry Dept. National Center for Radiation Research and TechnologyAtomic Energy AuthorityCairoEgypt
  2. 2.Department of Solid State PhysicsNational Center for Radiation Research and Technology, Atomic Energy AuthorityCairoEgypt

Personalised recommendations