Macromolecular Research

, Volume 25, Issue 6, pp 635–639 | Cite as

CO2-responsive bowl-shaped polymersomes

Article

Abstract

CO2-responsive bowl-shaped polymersomes caused by osmotic pressure have been successfully designed and constructed. Upon CO2-stimulus, these polymersomes can transform from bowl-shape into wrinkled structure because of the restricted hydration effect. These promising polymersomes with special structure upon exposure to biological gas are expected to be useful in nanomedicine.

Keywords

polymersomes stimuli-responsive CO2-sensitive self-assemblies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2017_5133_MOESM1_ESM.pdf (882 kb)
Supplementary material, approximately 881 KB.

References

  1. (1).
    A. C. Arsenault, D. A. Rider, N. Tétreault, J. I.-L. Chen, N. Coombs, G. A. Ozin, and I. Manners, J. Am. Chem. Soc., 127, 9954 (2005).CrossRefGoogle Scholar
  2. (2).
    J. Y. Cheng, A. M. Mayes, and C. A. Ross, Nat. Mater., 3, 823 (2004).CrossRefGoogle Scholar
  3. (3).
    R. Savić, L. Luo, A. Eisenberg, and D. Maysinger, Science, 300, 615 (2003).CrossRefGoogle Scholar
  4. (4).
    S. Sugihara, A. Blanazs, S. P. Armes, A. J. Ryan, and A. L. Lewis, J. Am. Chem. Soc., 133, 15707 (2011).CrossRefGoogle Scholar
  5. (5).
    M. Tagliazucchi, M. G. Blaber, G. C. Schatz, E. A. Weiss, and I. Szleifer, ACS Nano, 6, 8397 (2012).CrossRefGoogle Scholar
  6. (6).
    B. C. Tee, C. Wang, R. Allen, and Z. Bao, Nat. Nanotechnol., 7, 825 (2012).CrossRefGoogle Scholar
  7. (7).
    M. S. Shim and Y. J. Kwon, Adv. Drug Deliv. Rev., 64, 1046 (2012).CrossRefGoogle Scholar
  8. (8).
    D. E. Discher and A. Eisenberg, Science, 297, 967 (2002).CrossRefGoogle Scholar
  9. (9).
    S. Egli, H. Schlaad, N. Bruns, and W. Meier, Polymers, 3, 252 (2011).CrossRefGoogle Scholar
  10. (10).
    Y. Zhao, F. Sakai, L. Su, Y. Liu, K. Wei, G. Chen, and M. Jiang, Adv. Mater., 25, 5215 (2013).CrossRefGoogle Scholar
  11. (11).
    H. Che and J. C. van Hest, J. Mater. Chem. B, 4, 4632 (2016).CrossRefGoogle Scholar
  12. (12).
    B. J. Hong, A. J. Chipre, and S. T. Nguyen, J. Am. Chem. Soc., 135, 17655 (2013).CrossRefGoogle Scholar
  13. (13).
    J.-S. Park, M. K. Cho, E. J. Lee, K.-Y. Ahn, K. E. Lee, J. H. Jung, Y. Cho, S.-S. Han, Y. K. Kim, and J. Lee, Nat. Nanotechnol., 4, 259 (2009).CrossRefGoogle Scholar
  14. (14).
    J.-F. Gohy and Y. Zhao, Chem. Soc. Rev., 42, 7117 (2013).CrossRefGoogle Scholar
  15. (15).
    S. Dai, P. Ravi, and K. C. Tam, Soft Matter, 4, 435 (2008).CrossRefGoogle Scholar
  16. (16).
    Q. Yan, J. Yuan, W. Yuan, M. Zhou, Y. Yin, and C. Pan, Chem. Commun., 6188 (2008).Google Scholar
  17. (17).
    Q. Yan, J. Yuan, Z. Cai, Y. Xin, Y. Kang, and Y. Yin, J. Am. Chem. Soc., 132, 9268 (2010).CrossRefGoogle Scholar
  18. (18).
    Q. Yan, Y. Xin, R. Zhou, Y. Yin, and J. Yuan, Chem. Commun., 47, 9594 (2011).CrossRefGoogle Scholar
  19. (19).
    M. Huo, J. Yuan, L. Tao, and Y. Wei, Polym. Chem., 5, 1519 (2014).CrossRefGoogle Scholar
  20. (20).
    J. Hu, G. Zhang, and S. Liu, Chem. Soc. Rev., 41, 5933 (2012).CrossRefGoogle Scholar
  21. (21).
    H. Che, M. Huo, L. Peng, T. Fang, N. Liu, L. Feng, Y. Wei, and J. Yuan, Angew. Chem. Int. Ed., 127, 9062 (2015).CrossRefGoogle Scholar
  22. (22).
    H. Che, M. Huo, L. Peng, Q. Ye, J. Guo, K. Wang, Y. Wei, and J. Yuan, Polym. Chem., 6, 2319 (2015).CrossRefGoogle Scholar
  23. (23).
    Z. Guo, Y. Feng, S. He, M. Qu, H. Chen, H. Liu, Y. Wu, and Y. Wang, Adv. Mater., 25, 584 (2013).CrossRefGoogle Scholar
  24. (24).
    J. Guo, N. Wang, J. Wu, Q. Ye, C. Zhang, X.-H. Xing, and J. Yuan, J. Mater. Chem. B, 2, 437 (2014).CrossRefGoogle Scholar
  25. (25).
    A. Feng and J. Yuan, Macromol. Rapid Commun., 35, 767 (2014).CrossRefGoogle Scholar
  26. (26).
    Q. Yan, R. Zhou, C. Fu, H. Zhang, Y. Yin, and J. Yuan, Angew. Chem. Int. Ed., 123, 5025 (2011).CrossRefGoogle Scholar
  27. (27).
    Q. Yan, J. Wang, Y. Yin, and J. Yuan, Angew. Chem. Int. Ed., 52, 5070 (2013).CrossRefGoogle Scholar
  28. (28).
    Q. Yan and Y. Zhao, J. Am. Chem. Soc., 135, 16300 (2013).CrossRefGoogle Scholar
  29. (29).
    D. Han, O. Boissiere, S. Kumar, X. Tong, L. Tremblay, and Y. Zhao, Macromolecules, 45, 7440 (2012).CrossRefGoogle Scholar
  30. (30).
    Q. Yan and Y. Zhao, Angew. Chem. Int. Ed., 52, 9948 (2013).CrossRefGoogle Scholar
  31. (31).
    H. Liu, Z. Guo, S. He, H. Yin, C. Fei, and Y. Feng, Polym. Chem., 5, 4756 (2014).CrossRefGoogle Scholar
  32. (32).
    K. T. Kim, J. Zhu, S. A. Meeuwissen, J. J. Cornelissen, D. J. Pochan, R. J. Nolte, and J. C. van Hest, J. Am. Chem. Soc., 132, 12522 (2010).CrossRefGoogle Scholar
  33. (33).
    D. A. Wilson, R. J. Nolte, and J. C. Van Hest, Nat. Chem., 4, 268 (2012).CrossRefGoogle Scholar
  34. (34).
    F. Peng, Y. Tu, J. C. van Hest, and D. A. Wilson, Angew. Chem. Int. Ed., 127, 11828 (2015).CrossRefGoogle Scholar
  35. (35).
    F. Chécot, S. Lecommandoux, Y. Gnanou, and H. A. Klok, Angew. Chem. Int. Ed., 41, 1339 (2002).CrossRefGoogle Scholar
  36. (36).
    S. H. Kwon, W.-J. Jeong, J. S. Choi, S. Han, and Y.-B. Lim, Macromolecules, 49, 7426 (2016).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations