Advertisement

Macromolecular Research

, Volume 25, Issue 9, pp 913–923 | Cite as

Agar-carrageenan hydrogel blend as a carrier for the covalent immobilization of β-D-galactosidase

Article
  • 75 Downloads

Abstract

κ-Carrageenan (Car) was mixed with agar in order to improve the treated gel’s ability to covalently immobilize enzymes. The treatment process of the produced agar-Car gel involved reacting with both polyethyleneimine and glutaraldehyde so as to provide the functional groups necessary for the covalent binding of enzymes. The positive effect imparted by the addition of Car to agar was confirmed through the statistical Plackett-Burman design (PBD). The PBD was employed to investigate the effects of 11 factors on the preparation of the treated agar-Car gel disks, and the immobilization of β-D-galactosidase (β-gal) onto these disks. The PBD provided recommendations on the levels at which 10 of the tested factors should be employed in the future as these factors were shown to be insignificant. On the other hand, the significant factor, the loading enzyme’s activity, was optimized in order to attain the maximum observed activity of immobilized β-gal which amounted to 166.2 U/g gel. It was also shown that the agar-Car immobilized β-gal maintained 97.7% of its initial observed activity during its fifteenth reusability cycle.

Keywords

polymer blends agar-carrageenan covalent immobilization plackett-burman design polyethyleneimine glutaraldehyde 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2017_5123_MOESM1_ESM.pdf (109 kb)
Supplementary material, approximately 228 KB.

References

  1. (1).
    P. S. Panesar, R. Panesar, R. S. Singh, J. F. Kennedy, and H. J. Kumar, J. Chem. Technol. Biotechnol., 81, 530 (2006).CrossRefGoogle Scholar
  2. (2).
    M. M. M. Elnashar, J. Biomater. Nanobiotechnol., 1, 61 (2010).CrossRefGoogle Scholar
  3. (3).
    S. Ichikawa, K. Takano, T. Kuroiwa, O. Hiruta, S. Sato, and S. Mukataka, J. Biosci. Bioeng., 93, 201 (2002).CrossRefGoogle Scholar
  4. (4).
    T. Kuroiwa, H. Shoda, S. Ichikawa, S. Sato, and S. Mukataka, Process Biochem., 40, 2637(2005).CrossRefGoogle Scholar
  5. (5).
    T. Li, S. Li, N. Wang, and L. Tain, Food Chem., 109, 703 (2008).CrossRefGoogle Scholar
  6. (6).
    O. Prakash and N. Jaiswal, World Appl. Sci. J., 13, 572 (2011).Google Scholar
  7. (7).
    A. K. Rai, O. Prakash, J. Singh, and P. M. Singh, Adv. Biochem., 1, 51 (2013).CrossRefGoogle Scholar
  8. (8).
    H. U. Rehman, A. Aman, R. R. Zohra, and S. A. U. Qader, Carbohydr. Polym., 102, 622 (2014).CrossRefGoogle Scholar
  9. (9).
    M. I. Wahba and M. E. Hassan, Biopolymers, 103, 675 (2015).CrossRefGoogle Scholar
  10. (10).
    C. Delattre, T. A. Fenoradosoa, and P. Michaud, Braz. Arch. Biol. Technol., 54, 1075 (2011).CrossRefGoogle Scholar
  11. (11).
    Y. Freile-Pelegrín, D. Robledo, R. Armisén, and G. García-Reina, J. Appl. Phycol., 8, 239 (1996).CrossRefGoogle Scholar
  12. (12).
    C. Cui, Y. Tao, L. Li, B. Chen, and T. Tan, J. Mol. Catal. B: Enzym., 91, 59 (2013).CrossRefGoogle Scholar
  13. (13).
    R. Torres, B. C. C. Pessela, M. Fuentes, C. Mateo, R. Munilla, R. Fernandez-Lafuente, and J. Guisán, Enzyme Microb. Technol., 39, 711 (2006).CrossRefGoogle Scholar
  14. (14).
    B. C. C. Pessela, R. Fernández-Lafuente, M. Fuentes, A. Vián, J. L. García, A. V. Carrascosa, C. Mateo, and J. M. Guisánb, Enzyme Microb. Technol., 32, 369 (2003).CrossRefGoogle Scholar
  15. (15).
    M. M. M. Elnashar, M. I. Wahba, M. A. Amin, and A. I. Eldiwany, J. Appl. Polym. Sci., 131, DOI 10.1002/app.40295 (2014).Google Scholar
  16. (16).
    M. M. M. Elnashar, M. A. Yassin, and T. Kahil, J. Appl. Polym. Sci., 109, 4105 (2008).CrossRefGoogle Scholar
  17. (17).
    M. M. Elnashar, P. Millner, A. Johnson, and T. Gibson, Biotechnol. Lett., 27, 737 (2005).CrossRefGoogle Scholar
  18. (18).
    T. Haider and Q. Husain, Int. J. Biol. Macromol., 41, 72 (2007).CrossRefGoogle Scholar
  19. (19).
    M. I. Wahba, Int. J. Biol. Macromol., 91, 877 (2016).CrossRefGoogle Scholar
  20. (20).
    D. Cao, Y. Zhang, Z. Cui, Y. Du, and Z. Shi, Mater. Sci. Eng., C, 70, 665 (2017).CrossRefGoogle Scholar
  21. (21).
    M. M. M. Elnashar and M. A. Yassin, Appl. Biochem. Biotechnol., 159, 426 (2009).CrossRefGoogle Scholar
  22. (22).
    O. Barbosa, C. Ortiz, A. Berenguer-Murica, R. Torres, R. C. Rodrigues, and R. Fernandez-Lafuente, RSC Adv., 4, 1583 (2014).CrossRefGoogle Scholar
  23. (23).
    L. Ren, J. He, S. Zhang, D. G. Evans, and X. Duan, J. Mol. Catal. B: Enzym., 18, 3 (2002).CrossRefGoogle Scholar
  24. (24).
    A. J. Mitchell and J. W. T. Wimpenny, J. Appl. Microbiol., 83, 76 (1997).CrossRefGoogle Scholar
  25. (25).
    M. Sadeghi, Braz. J. Chem. Eng., 29, 295 (2012).CrossRefGoogle Scholar
  26. (26).
    Y. Toyama, R. Sahara, Y. Lino, and K. Kubota, Trans. Mater. Res. Soc. Jpn., 36, 383 (2011).CrossRefGoogle Scholar
  27. (27).
    M. Borkovec and G. J. M. Koper, Macromolecules, 30, 2151 (1997).CrossRefGoogle Scholar
  28. (28).
    P. Monsan, J. Mol. Catal., 3, 371 (1978).CrossRefGoogle Scholar
  29. (29).
    L. H. H. Olde Damnik, P. J. Dijkstra, M. J. A. Van Luyn, P. B. Van Wachem, P. Nieuwenhuis, and J. Feijen, J. Mater. Sci., Mater. Med., 6, 460 (1995).CrossRefGoogle Scholar
  30. (30).
    M. I. Wahba, Biotechnol. Appl. Biochem., 63, 546 (2015).CrossRefGoogle Scholar
  31. (31).
    S. A. Ansari and Q. Husain, J. Mol. Catal. B: Enzym., 63, 68 (2010).CrossRefGoogle Scholar
  32. (32).
    L. C. Sang, A. Vinu, and M. O. Coppens, Langmuir, 27, 13828 (2011).CrossRefGoogle Scholar
  33. (33).
    N. Albayrak and S. T. Yang, Enzyme Microb. Technol., 31, 371 (2002).CrossRefGoogle Scholar
  34. (34).
    S. A. Ansari, R. Satar, S. K. Zaidi, and A. Ahmed, Int. Scholarly Res. Not., DOI 10.1155/2014/163987 (2014).Google Scholar
  35. (35).
    M. M. M. Elnashar and M. E. Hassan, BioMed Res. Int., DOI 10.1155/2014/817985 (2014).Google Scholar
  36. (36).
    G. E. A. Awad, A. A. Abd El Aty, A. N. Shehata, M. E. Hassan, and M. M. Elnashar, 3 Biotech, DOI:10.1007/s13205-015-0338-x (2016).Google Scholar
  37. (37).
    M. M. Maksimainen, A. Lampio, M. Mertanen, O. Turunen, and J. Rouvinen, Int. J. Biol. Macromol., 60, 109 (2013).CrossRefGoogle Scholar
  38. (38).
    X. Chen and C. G. Roberts, US Patent 6,399,850 B1 (2002).Google Scholar
  39. (39).
    A. R. C. Braga, M. F. Silva, J. V. Oliveira, H. Treichel, and S. J. Kalil, Quim. Nova, 37, 796 (2014).CrossRefGoogle Scholar
  40. (40).
    M. M. Elnashar, G. E. Awad, M. E. Hassan, M. S. Mohy Eldin, B. M. Haroun, and A. I. El-Diwany, Sci. World J., DOI 10.1155/2014/571682 (2014).Google Scholar
  41. (41).
    M. P. Klein, C. R. Hackenhaar, A. S. G. Lorenzoni, R. C. Rodrigues, T. M. H. Costa, J. L. Ninow, and P. F. Hertz, Carbohydr. Polym., 137, 184 (2016).CrossRefGoogle Scholar
  42. (42).
    R. C. Rodrigues, C. Ortiz, A. Berenguer-Murcia, R. Torres, and R. Fernandez-Lafuente, Chem. Soc. Rev., 42, 6290 (2013).CrossRefGoogle Scholar
  43. (43).
    Sigma-Aldrich. κ-Carrageenan. http://www.sigmaaldrich.com/catalog/product/sigma/22048Google Scholar
  44. (44).
    Sigma-Aldrich. Poly(ethyleneimine) solution. http://www.sigmaaldrich. com/catalog/product/sigma/p3143Google Scholar
  45. (45).
    Sigma-Aldrich. Glutaraldehyde solution. http://www.sigmaaldrich. com/catalog/product/sigma/g6257Google Scholar
  46. (46).
    S. D. Fine-Chem Limited. Price list 2016-2017. http://www.sdfine. com/pricelistpdf.pdfGoogle Scholar
  47. (47).
    Sigma-Aldrich. Eupergit® CM. http://www.sigmaaldrich.com/catalog/product/sigma/07742Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Chemistry of Natural and Microbial ProductsNational Research CenterDokki, GizaEgypt
  2. 2.Centre of Scientific Excellence-Group of Encapsulation and NanobiotechnologyNational Research CenterDokki, GizaEgypt

Personalised recommendations