Skip to main content
Log in

Fabrication and characterization of aligned fibrin nanofiber hydrogel loaded with PLGA microspheres

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Developing novel biomaterials that deliver multiple regulatory signals is crucial to tissue regeneration by creating an ideal regenerative microenvironment. The purpose of the study is to develop a bioactive hydrogel delivering biomimetic joint regulatory cues of low elasticity, aligned structure, and neurotropic factors for nerve regeneration. Here a hierarchically aligned fibrin nanofiber hydrogel (AFG) loaded with drug-encapsulated poly(DL-lactic-co-glycolic acid) (PLGA) microspheres (PLGA@AFG) was prepared via electrospray and electrospinning. Firstly, drug-nanoencapsulated PLGA microspheres were prepared by electrospray method. Then electrospinning process was used to fabricate the aligned nanofiber hydrogel loaded with PLGA microspheres. Scanning electron microscope (SEM) and laser scanning confocal microscope were engaged to characterize the morphology and drug distribution of the composite hydrogel. The drug release behavior was observed by the use of Congo red as the model drug in vitro. The results proved the composite hydrogel maintained the aligned structure and soft properties of the AFG, and achieved a more reasonable drug release behavior for reducing the initial burst release comparing to the PLGA microspheres. Human umbilical mesenchymal stem cells (hUMSCs) were cultured on the PLGA@AFG composite hydrogel. The stem cells exhibited remarkable elongation along the long axis of the AFG with a bipolar morphology, indicating the good biocompatibility of the PLGA@AFG and the regulatory effect of the aligned structure on cell attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, Adv. Mater., 21, 3307 (2009).

    Article  CAS  Google Scholar 

  2. D. Macaya and M. Spector, Biomed. Materials., 7, 012001 (2012).

    Article  CAS  Google Scholar 

  3. R. Teresa, T. Marta, G. Carmen, G. Antonio, and A. Luigi, Proc. Inst. Mech. Eng. H J. Eng. Med., 229, 905 (2015).

    Article  Google Scholar 

  4. C. Gumera, B. Rauck, and Y. Wang, J. Mater. Chem., 21, 7033 (2011).

    Article  CAS  Google Scholar 

  5. D. A. Mccreedy and S. E. Sakiyama-Elbert, Neurosci. Lett., 519, 115 (2012).

    Article  CAS  Google Scholar 

  6. C. S. Ahuja and M. Fehlings, Stem Cells Transl. Med., 5, (2016).

    Google Scholar 

  7. M. V. Sofroniew, Nat. Rev. Neurosci., 16, 249 (2015).

    Article  CAS  Google Scholar 

  8. G. Yiu and Z. He, Nature. Rev. Neurosci., 7, 617 (2006).

    Article  CAS  Google Scholar 

  9. Z. Z. Khaing, R. C. Thomas, S. A. Geissler, and C. E. Schmidt, Mater. Today, 17, 332 (2014).

    Article  CAS  Google Scholar 

  10. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell, 126, 677 (2006).

    Article  CAS  Google Scholar 

  11. A. M. Thomas, M. B. Kubilius, S. J. Holland, S. K. Seidlits, R. M. Boehler, A. J. Anderson, B. J. Cummings, and L. D. Shea, Biomaterials, 34, 2213 (2013).

    Article  CAS  Google Scholar 

  12. S. Stokols and M. H. Tuszynski, Biomaterials, 27, 443 (2006).

    Article  CAS  Google Scholar 

  13. T. Gros, J. S. Sakamoto, A. Blesch, L. A. Havton, and M. H. Tuszynski, Biomaterials, 31, 6719 (2010).

    Article  CAS  Google Scholar 

  14. M. Gao, P. Lu, B. Bednark, D. Lynam, J. M. Conner, J. Sakamoto, and M. H. Tuszynski, Biomaterials, 34, 1529 (2013).

    Article  CAS  Google Scholar 

  15. L. Tian, M. P. Prabhakaran, and S. Ramakrishna, Regen. Biomater., 2, 31 (2015).

    Article  CAS  Google Scholar 

  16. E. J. Berns, S. Sur, L. Pan, J. E. Goldberger, S. Suresh, S. Zhang, J. A. Kessler, and S. I. Stupp, Biomaterials, 35, 185 (2014).

    Article  CAS  Google Scholar 

  17. S. Han, B. Wang, W. Jin, Z. Xiao, X. Li, W. Ding, M. Kapur, B. Chen, B. Yuan, and T. Zhu, Biomaterials, 41, 89 (2015).

    Article  CAS  Google Scholar 

  18. V. J. Mukhatyar, M. Salmerónsánchez, S. Rudra, S. Mukhopadaya, T. H. Barker, A. J. García, and R. V. Bellamkonda, Biomaterials, 32, 3958 (2011).

    Article  CAS  Google Scholar 

  19. J. Xie, S. M. Willerth, X. Li, M. R. Macewan, A. Rader, S. E. Sakiyamaelbert, and Y. Xia, Biomaterials, 30, 354 (2009).

    Article  CAS  Google Scholar 

  20. S. Yao, X. Liu, S. Yu, X. Wang, S. Zhang, Q. Wu, X. Sun, and H. Mao, Nanoscale, 8, 10252 (2016).

    Article  CAS  Google Scholar 

  21. H. L. Xu, F. R. Tian, C. T. Lu, J. Xu, Z. L. Fan, J. J. Yang, P. P. Chen, Y. D. Huang, J. Xiao, and Y. Z. Zhao, Sci. Rep., 6, 38332 (2016).

    Article  CAS  Google Scholar 

  22. N. A. Silva, N. Sousa, R. L. Reis, and A. J. Salgado, Prog. Neurobiol., 114, 25 (2013).

    Article  Google Scholar 

  23. Z. Yang, A. Zhang, H. Duan, S. Zhang, P. Hao, K. Ye, Y. E. Sun, and X. Li, Proc. Natl. Acad. Sci. U.S.A., 112, 13354 (2015).

    Article  CAS  Google Scholar 

  24. H. Duan, W. Ge, A. Zhang, Y. Xi, Z. Chen, D. Luo, Y. Cheng, K. S. Fan, S. Horvath, and M. V. Sofroniew, Proc. Natl. Acad. Sci. U.S.A., 112, 13360 (2015).

    Article  CAS  Google Scholar 

  25. S. Yu, S. Yao, Y. Wen, W. Ying, W. Hao, and Q. Xu, Sci. Rep., 6, (2016).

    Google Scholar 

  26. F. Ramazani, W. Chen, C. F. van Nostrum, G. Storm, F. Kiessling, T. Lammers, W. E. Hennink, and R. J. Kok, Int. J. Pharm., 499, 358 (2016).

    Article  CAS  Google Scholar 

  27. W. Jiang, R. K. Gupta, M. C. Deshpande, and S. P. Schwendeman, Adv. Drug Deliv. Rev., 57, 391 (2005).

    Article  CAS  Google Scholar 

  28. S. Yao, H. Liu, S. Yu, Y. Li, X. Wang, and L. Wang, Regen. Biomater., 3, 309 (2016).

    Article  Google Scholar 

  29. W. L. Murphy, T. C. Mcdevitt, and A. J. Engler, Nat. Mater., 13, 547 (2014).

    Article  CAS  Google Scholar 

  30. F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, Cell Stem Cell, 5, 17 (2009).

    Article  CAS  Google Scholar 

  31. S. H. Lim, X. Y. Liu, H. Song, K. J. Yarema, and H. Q. Mao, Biomaterials, 31, 9031 (2010).

    Article  CAS  Google Scholar 

  32. K. N. Dahl, A. J. S. Ribeiro, and J. Lammerding, Circ. Res., 102, 1307 (2008).

    Article  CAS  Google Scholar 

  33. K. Haase, J. K. Macadangdang, C. H. Edrington, C. M. Cuerrier, S. Hadjiantoniou, J. L. Harden, I. S. Skerjanc, and A. E. Pelling, Sci. Rep., 6, 21300 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiumei Wang or Luning Wang.

Additional information

Acknowledgments: This work is in part supported by China Postdoctoral Science Foundation (2016M591075 and 2015M581120), Fundamental Research Funds for the Central Universities (2302016FRF-TP-16-001A1) and Tsinghua University Initiative Scientific Research Program (20161080091, 20131089199).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Yang, Y., Wang, X. et al. Fabrication and characterization of aligned fibrin nanofiber hydrogel loaded with PLGA microspheres. Macromol. Res. 25, 528–533 (2017). https://doi.org/10.1007/s13233-017-5121-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5121-x

Keywords

Navigation