Macromolecular Research

, Volume 25, Issue 9, pp 950–955 | Cite as

Dual-fluorophore silica microspheres for ratiometric acidic pH sensing

Article

Abstract

Encapsulation of fluorophores in silica matrix offers many advantages such inhibition of photobleaching and possibilities for ratiometric pH sensing. Dualfluorophore pH-responsive silica microspheres, incorporating pyranine (HPTS) and rhodamine B isothiocyanate (RBITC), were synthesized by Stöber method, followed layer-by-layer depositions. The resulting dual-fluorophore silica microspheres were then characterized by SEM, TEM, fluorescence spectroscopy and imaging. The incorporation of two dyes in the microspheres allowed ratiometric quantification of pH. The ratiometric approach has been proven to reduce the influences of external perturbations and unequal dye concentration in silica matrix during measurements. The dynamic range for pH was from 1.5 to 4. The sensing microspheres could be applied to determine acidic pH. Additionally, the sensing microspheres exhibited a high colloidal and long-term stability and also allow a fast detection of pH due the porosity of the microspheres. Such structured microspheres could be optimized, using multiple dyes for multianalyte detection.

Keywords

ratiometric pH measurement silica dual-fluorophore fluorescence spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. Han and K. Burgess, Chem. Rev., 24, 297 (2010).Google Scholar
  2. (2).
    G. Hidalgo, A. Burns, E. Herz, A. G. Hay, P. L. Houston, and U. Wiesner, Appl. Environ. Microbiol., 75, 7426 (2009).CrossRefGoogle Scholar
  3. (3).
    Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, J. Biophotonics, 360, 44 (2003).Google Scholar
  4. (4).
    A. Burns, P. Sengupta, T. Zedayko, B. Baird, and U. Wiesner, Small, 2, 723 (2006).CrossRefGoogle Scholar
  5. (5).
    Z. Zhujun and W. R. Seitz, Anal. Chim. Acta, 160, 47 (1984).CrossRefGoogle Scholar
  6. (6).
    Z.-Z. Li, C.-G. Niu, G.-M. Zeng, Y.-G. Liu, P.-F. Gao, and G.-H. Huang, Sens. Actuators, B, 114, 308 (2006).CrossRefGoogle Scholar
  7. (7).
    S.-L. Shen, X.-F. Zhang, S.-Y. Bai, J.-Y. Miao, and B.-X. Zhao, RSC Adv., 5, 13341 (2015).CrossRefGoogle Scholar
  8. (8).
    H. Offenbacher, O. S. Wolfbeis, and E. Fürlinger, Sens. Actuators, 9, 73 (1986).CrossRefGoogle Scholar
  9. (9).
    R. N. Dansby-Sparks, J. Jin, S. J. Mechery, U. Sampathkumaran, T. W. Owen, B. D. Yu, K. Goswami, K. Hong, J. Grant, and Z.-L Xue, Anal. Chem., 82, 593 (2009).CrossRefGoogle Scholar
  10. (10).
    A. J. Amali, N. H. Awwad, R. K. Rana, and D. Patra, Anal. Chim. Acta, 708, 75, (2011).CrossRefGoogle Scholar
  11. (11).
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science+Business Media, New York, 2006.CrossRefGoogle Scholar
  12. (12).
    H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, and U. Wiesner, Nano Lett., 5, 113 (2005).CrossRefGoogle Scholar
  13. (13).
    I. Y. Kim, E. Joachim, H. Choi, and K. Kim, Nanomedicine, 11, 1407 (2015).CrossRefGoogle Scholar
  14. (14).
    A. Mills, Q. Chang, and N. McMurray, Anal. Chem., 64, 1383 (1992).CrossRefGoogle Scholar
  15. (15).
    F. J. Arriagada and K. Osseo-Asare, J. Colloid Interface Sci., 211, 210, (1999).CrossRefGoogle Scholar
  16. (16).
    F. Gao, X. Chen, Q. Ye, Z. Yao, X. Guo, and L. Wang, Microchim. Acta, 172, 327 (2011).CrossRefGoogle Scholar
  17. (17).
    H. Giesche, J. Eur. Ceram. Soc., 14, 205 (1994).CrossRefGoogle Scholar
  18. (18).
    J. Liang, Z. Lu, J. Xu, J. Li, H. Zhang, and W. Yang, J. Mater. Chem., 21, 1147 (2011).CrossRefGoogle Scholar
  19. (19).
    E. Herz, H. Ow, D. Bonner, A. Burns, and U. Wiesner, J. Mater. Chem., 19, 6341 (2009).CrossRefGoogle Scholar
  20. (20).
    R. N. Smith, L. Reven, and C. J. Barrett, Macromolecules, 36, 1876 (2003).CrossRefGoogle Scholar
  21. (21).
    J.-F. Liu, G. Min, and W. A. Ducker, Langmuir, 17, 4895 (2001).CrossRefGoogle Scholar
  22. (22).
    F. Caruso and H. Möhwald, Langmuir, 15, 8276 (1999).CrossRefGoogle Scholar
  23. (23).
    D. J. Tobler, S. Shaw, and L. G. Benning, Geochim. Cosmochim. Acta, 73, 5377 (2009).CrossRefGoogle Scholar
  24. (24).
    Z. H. Bai, R. Chen, P. Si, Y. J. Huang, H. D. Sun, and D. H. Kim, ACS Appl. Mater. Interfaces, 5, 5856 (2013).CrossRefGoogle Scholar
  25. (25).
    S. H. Lee, J. Kumar, and S. K. Tripathy, Langmuir, 16, 10482 (2000).CrossRefGoogle Scholar
  26. (26).
    Z. Sharrett, S. Gamsey, L. Hirayama, B. Vilozny, J. T. Suri, R. A. Wessling, and B. Singaram, Org. Biomol. Chem., 7, 1461 (2009).CrossRefGoogle Scholar
  27. (27).
    R. V. Benjaminsen, H. H. Sun, J. R. Henriksen, N. M. Christensen, K. Almdal, and T. L. Andresen, ACS Nano, 5, 5864 (2011).CrossRefGoogle Scholar
  28. (28).
    J. Y. Han and K. Burgess, Chem. Rev., 110, 2709 (2010).CrossRefGoogle Scholar
  29. (29).
    S. G. Schulman, S. Chen, F. Bai, M. J. Leiner, L. Weis, and O. S. Wolfbeis, Anal. Chim. Acta, 304, 165 (1995).CrossRefGoogle Scholar
  30. (30).
    R. V. Benjaminsen, H. Sun, J. R. Henriksen, N. M. Christensen, K. Almdal, and T. L. Andresen, ACS Nano, 5, 5864 (2011).CrossRefGoogle Scholar
  31. (31).
    T. A. Krulwich, G. Sachs, and E. Padan, Nat. Rev. Microbiol., 9, 330 (2011).CrossRefGoogle Scholar
  32. (32).
    S. Park, G. S. Lee, C. Cui, and D. J. Ahn, Macromol. Res., 24, 380 (2016).CrossRefGoogle Scholar
  33. (33).
    H. Lee, S. H. Hong, and D. J. Ahn, Macromol. Res., 23, 124 (2015).CrossRefGoogle Scholar
  34. (34).
    Y. S. Chung, M. Y. Jeon, and C. K. Kim, Macromol. Res., 17, 37 (2009).CrossRefGoogle Scholar
  35. (35).
    S. T. Ha, O. O. Park, and S. H. Im, Macromol. Res., 18, 321 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Biomicrosystem TechnologyKorea UniversitySeoulKorea
  2. 2.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  3. 3.KU-KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulKorea
  4. 4.Biomedical Engineering ProgramKwame Nkrumah University of Science and Technology, University PostKumasiGhana

Personalised recommendations