Enhanced thermal conductivity of epoxy/Cu-plated carbon fiber fabric composites


Enhanced heat conduction behavior of epoxy/polyacrylonitrile-based carbon fiber fabric composites was developed through Cu electroplating on carbon fiber fabrics. The polyacrylonitrile-based carbon fiber fabric with low thermal conductivity was employed as a template to form continuous Cu thermal conduction pathway. The epoxy composites with the continuous heat conduction pathway exhibited high thermal conductivities of 7.70 W/mK in the parallel direction, and 0.96 W/mK in the perpendicular direction, even with a lower Cu content of 3.5 vol%, which is a 220% and 70% increase over those of the epoxy/carbon fiber composites with isolated Cu beads, respectively. The experimental thermal conductivities of the composites were compared to the theoretically calculated values based on the Hatta and Taya models. Our simple approach offers a straightforward strategy to enhance thermal conductivity of polymer composites through incorporating the continuous Cu thin layers as an efficient thermal conduction pathway.

This is a preview of subscription content, access via your institution.


  1. (1)

    Z. Han and A. Fina, Prog. Polym. Sci., 36, 914 (2011).

    CAS  Article  Google Scholar 

  2. (2)

    M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo, and S. Volz, Adv. Mater., 22, 1654 (2010).

    CAS  Article  Google Scholar 

  3. (3)

    M. T. Barako, A. Sood, C. Zhang, J. Wang, T. Kodama, M. Asheghi, X. Zheng, P. V. Braun, and K. E. Goodson, Nano Lett., 16, 2754 (2016).

    CAS  Article  Google Scholar 

  4. (4)

    H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, and B. Chen, Prog. Polym. Sci., 59, 41 (2016).

    CAS  Article  Google Scholar 

  5. (5)

    N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, and D. Ruch, Prog. Polym. Sci., 61, 1 (2016).

    CAS  Article  Google Scholar 

  6. (6)

    Z. Pang, X. Gu, Y. Wei, R. Yang, and M. S. Dresselhaus, Nano Lett., 17, 179 (2017).

    CAS  Article  Google Scholar 

  7. (7)

    A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle, and K. E. Goodson, ACS Nano, 5, 4818 (2011).

    CAS  Article  Google Scholar 

  8. (8)

    H. Jung, S. Yu, N.-S. Bae, S. M. Cho, R. H. Kim, S. H. Cho, I. Hwang, B. Jeong, J. S. Ryu, J. Hwang, S. M. Hong, C. M. Koo, and C. Park, ACS Appl. Mater. Interfaces, 7, 15256 (2015).

    CAS  Article  Google Scholar 

  9. (9)

    K. M. F. Shahil, and A. A. Balandin, Nano Lett., 12, 861 (2012).

    CAS  Article  Google Scholar 

  10. (10)

    S. H. Song, K. H. Park, B. H. Kim, Y. W. Choi, G. H. Jun, D. J. Lee, B.-S. Kong, K.-W. Pail, and S. Jeon, Adv. Mater., 25, 732 (2012).

    Article  Google Scholar 

  11. (11)

    C. Yuan, B. Duan, L. Li, B. Xie, M. Huang, and X. Luo, ACS Appl. Mater. Interfaces, 7, 13000 (2015).

    CAS  Article  Google Scholar 

  12. (12)

    X. Juang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, and T. Tanaka, Adv. Funct. Mater., 23, 1824 (2013).

    Article  Google Scholar 

  13. (13)

    J. R. Choi, S. Yu, H. Jung, S. K. Hwang, R. H. Kim, G. Song, S. H. Cho, I. Bae, S. M. Hong, C. M. Koo, and C. Park, Nanoscale, 7, 1888 (2015).

    CAS  Article  Google Scholar 

  14. (14)

    D. Suh, C. M. Moon, D. Kim, and S. Baik, Adv. Mater., 28, 7220, (2016).

    CAS  Article  Google Scholar 

  15. (15)

    K. Pashayi, H. R. Fard, F. Lai, S. Iruvanti, J. Plawsky, and T. Borca-Tasciuc, J. Appl. Phys., 111, 104310 (2012).

    Article  Google Scholar 

  16. (16)

    S. Yu, J.-W. Lee, T. H. Han, C. Park, Y. Kwon, S. M. Hong, and C. M. Koo, ACS Appl. Mater. Interfaces, 5, 11618 (2013).

    CAS  Article  Google Scholar 

  17. (17)

    I. Seshadri, G. L. Esquenazi, T. Borca-Tasciuc, P. Keblinski, and G. Ramanath, Adv. Mater. Interfaces, 2, 1500186 (2015).

    Article  Google Scholar 

  18. (18)

    Z. Lin and V. Zhigilei, Phys. Rev. B, 77, 075133 (2008)

    Article  Google Scholar 

  19. (19)

    G. Wiedemann and R. Franz, Ann. Phys., 89, 497 (1853).

    Google Scholar 

  20. (20)

    D. D. Edie, Carbon, 37, 345 (1998).

    Article  Google Scholar 

  21. (21)

    S. Han, J. T. Lin, Y. Yamada, and D. D. L. Chung, Carbon, 46, 1060 (2008).

    CAS  Article  Google Scholar 

  22. (22)

    S. Han, and D. D. L. Chung, Compos. Sci. Technol., 71, 1944 (2011).

    CAS  Article  Google Scholar 

  23. (23)

    R. Taipalus, T. Harmia, M. Q. Zhang, and K. Friedrich, Compos. Sci. Technol., 61, 801 (2001).

    CAS  Article  Google Scholar 

  24. (24)

    L. Qiu, X. H. Zheng, J. Zhu, G. P. Su, and D. W. Tang, Carbon, 51, 265 (2013).

    CAS  Article  Google Scholar 

  25. (25)

    H. A. Katzman, P. M. Adams, T. D. Le, and C. S. Hemminger, Carbon, 32, 379 (1994).

    CAS  Article  Google Scholar 

  26. (26)

    A. Dasgupta and R. K. Agarwal, J. Compos. Mater., 26, 2736 (1992).

    CAS  Article  Google Scholar 

  27. (27)

    Q.-G. Ning and T.-W. Chou, J. Compos. Mater., 29, 2280 (1995).

    CAS  Article  Google Scholar 

  28. (28)

    U. I. Thomann, M. Sauter, and P. Ermanni, Compos. Sci. Technol., 64, 1637 (2004).

    CAS  Article  Google Scholar 

  29. (29)

    I. J. Turias, J. M. Gutierrez, and P. L. Galindo, Compos. Sci. Technol., 65, 609 (2005).

    Article  Google Scholar 

  30. (30)

    H. Hatta and M. Taya, J. Appl. Phys., 58, 2478 (1985).

    CAS  Article  Google Scholar 

  31. (31)

    J. R. Gaier, Y. Y. Vandenberg, S. Berkebile, H. Stueben, and F. Balagadde, Carbon, 41, 2187 (2003).

    CAS  Article  Google Scholar 

  32. (32)

    G. E. Youngblood, D. J. Senor, R. H. Jones, and S. Graham, Compos. Sci. Technol., 62, 1127 (2002).

    CAS  Article  Google Scholar 

  33. (33)

    Q.-G. Ning and T.-W. Chou, Compos. Part A, 29A, 315 (1998).

    CAS  Article  Google Scholar 

  34. (34)

    H. Hatta and M. Taya, Int. J. Eng. Sci., 24, 1159 (1986).

    CAS  Article  Google Scholar 

  35. (35)

    J. Schuster, D. Heider, and K. Sharp, Compos. Sci. Technol., 68, 2085 (2008).

    CAS  Article  Google Scholar 

  36. (36)

    Y. M. Shabana and N. Noda, Int. J. Solids Struct., 45, 3494 (2008).

    Article  Google Scholar 

  37. (37)

    T. Hara, S. Kamijima, and Y. Shimura, Electrochem. Solid-State Lett., 6, C8 (2003).

    CAS  Article  Google Scholar 

  38. (38)

    J.-L. Auriault and H. I. Ene, Int. J. Heat Mass Transfer, 37, 2885 (1994).

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Cheolmin Park or Tae Hee Han or Chong Min Koo.

Additional information

Acknowledgments: This work was supported by a grant from Fundamental R&D Program for Core Technology of Materials and Industrial Strategic Technology Development Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea and was partially supported by the Korea Institute of Science and Technology (KIST) and the research fund of Hanyang University (HY-2013). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Park, K., Lee, JW. et al. Enhanced thermal conductivity of epoxy/Cu-plated carbon fiber fabric composites. Macromol. Res. 25, 559–564 (2017). https://doi.org/10.1007/s13233-017-5114-9

Download citation


  • thermal conductivity
  • low percolation
  • composite materials
  • electroplating
  • Cu
  • carbon fiber