Macromolecular Research

, Volume 25, Issue 6, pp 559–564 | Cite as

Enhanced thermal conductivity of epoxy/Cu-plated carbon fiber fabric composites

  • Seunggun Yu
  • Kyusup Park
  • Jang-Woo Lee
  • Soon Man Hong
  • Cheolmin ParkEmail author
  • Tae Hee HanEmail author
  • Chong Min KooEmail author


Enhanced heat conduction behavior of epoxy/polyacrylonitrile-based carbon fiber fabric composites was developed through Cu electroplating on carbon fiber fabrics. The polyacrylonitrile-based carbon fiber fabric with low thermal conductivity was employed as a template to form continuous Cu thermal conduction pathway. The epoxy composites with the continuous heat conduction pathway exhibited high thermal conductivities of 7.70 W/mK in the parallel direction, and 0.96 W/mK in the perpendicular direction, even with a lower Cu content of 3.5 vol%, which is a 220% and 70% increase over those of the epoxy/carbon fiber composites with isolated Cu beads, respectively. The experimental thermal conductivities of the composites were compared to the theoretically calculated values based on the Hatta and Taya models. Our simple approach offers a straightforward strategy to enhance thermal conductivity of polymer composites through incorporating the continuous Cu thin layers as an efficient thermal conduction pathway.


thermal conductivity low percolation composite materials electroplating Cu carbon fiber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Z. Han and A. Fina, Prog. Polym. Sci., 36, 914 (2011).CrossRefGoogle Scholar
  2. (2).
    M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo, and S. Volz, Adv. Mater., 22, 1654 (2010).CrossRefGoogle Scholar
  3. (3).
    M. T. Barako, A. Sood, C. Zhang, J. Wang, T. Kodama, M. Asheghi, X. Zheng, P. V. Braun, and K. E. Goodson, Nano Lett., 16, 2754 (2016).CrossRefGoogle Scholar
  4. (4).
    H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, and B. Chen, Prog. Polym. Sci., 59, 41 (2016).CrossRefGoogle Scholar
  5. (5).
    N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, and D. Ruch, Prog. Polym. Sci., 61, 1 (2016).CrossRefGoogle Scholar
  6. (6).
    Z. Pang, X. Gu, Y. Wei, R. Yang, and M. S. Dresselhaus, Nano Lett., 17, 179 (2017).CrossRefGoogle Scholar
  7. (7).
    A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle, and K. E. Goodson, ACS Nano, 5, 4818 (2011).CrossRefGoogle Scholar
  8. (8).
    H. Jung, S. Yu, N.-S. Bae, S. M. Cho, R. H. Kim, S. H. Cho, I. Hwang, B. Jeong, J. S. Ryu, J. Hwang, S. M. Hong, C. M. Koo, and C. Park, ACS Appl. Mater. Interfaces, 7, 15256 (2015).CrossRefGoogle Scholar
  9. (9).
    K. M. F. Shahil, and A. A. Balandin, Nano Lett., 12, 861 (2012).CrossRefGoogle Scholar
  10. (10).
    S. H. Song, K. H. Park, B. H. Kim, Y. W. Choi, G. H. Jun, D. J. Lee, B.-S. Kong, K.-W. Pail, and S. Jeon, Adv. Mater., 25, 732 (2012).CrossRefGoogle Scholar
  11. (11).
    C. Yuan, B. Duan, L. Li, B. Xie, M. Huang, and X. Luo, ACS Appl. Mater. Interfaces, 7, 13000 (2015).CrossRefGoogle Scholar
  12. (12).
    X. Juang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, and T. Tanaka, Adv. Funct. Mater., 23, 1824 (2013).CrossRefGoogle Scholar
  13. (13).
    J. R. Choi, S. Yu, H. Jung, S. K. Hwang, R. H. Kim, G. Song, S. H. Cho, I. Bae, S. M. Hong, C. M. Koo, and C. Park, Nanoscale, 7, 1888 (2015).CrossRefGoogle Scholar
  14. (14).
    D. Suh, C. M. Moon, D. Kim, and S. Baik, Adv. Mater., 28, 7220, (2016).CrossRefGoogle Scholar
  15. (15).
    K. Pashayi, H. R. Fard, F. Lai, S. Iruvanti, J. Plawsky, and T. Borca-Tasciuc, J. Appl. Phys., 111, 104310 (2012).CrossRefGoogle Scholar
  16. (16).
    S. Yu, J.-W. Lee, T. H. Han, C. Park, Y. Kwon, S. M. Hong, and C. M. Koo, ACS Appl. Mater. Interfaces, 5, 11618 (2013).CrossRefGoogle Scholar
  17. (17).
    I. Seshadri, G. L. Esquenazi, T. Borca-Tasciuc, P. Keblinski, and G. Ramanath, Adv. Mater. Interfaces, 2, 1500186 (2015).CrossRefGoogle Scholar
  18. (18).
    Z. Lin and V. Zhigilei, Phys. Rev. B, 77, 075133 (2008)CrossRefGoogle Scholar
  19. (19).
    G. Wiedemann and R. Franz, Ann. Phys., 89, 497 (1853).Google Scholar
  20. (20).
    D. D. Edie, Carbon, 37, 345 (1998).CrossRefGoogle Scholar
  21. (21).
    S. Han, J. T. Lin, Y. Yamada, and D. D. L. Chung, Carbon, 46, 1060 (2008).CrossRefGoogle Scholar
  22. (22).
    S. Han, and D. D. L. Chung, Compos. Sci. Technol., 71, 1944 (2011).CrossRefGoogle Scholar
  23. (23).
    R. Taipalus, T. Harmia, M. Q. Zhang, and K. Friedrich, Compos. Sci. Technol., 61, 801 (2001).CrossRefGoogle Scholar
  24. (24).
    L. Qiu, X. H. Zheng, J. Zhu, G. P. Su, and D. W. Tang, Carbon, 51, 265 (2013).CrossRefGoogle Scholar
  25. (25).
    H. A. Katzman, P. M. Adams, T. D. Le, and C. S. Hemminger, Carbon, 32, 379 (1994).CrossRefGoogle Scholar
  26. (26).
    A. Dasgupta and R. K. Agarwal, J. Compos. Mater., 26, 2736 (1992).CrossRefGoogle Scholar
  27. (27).
    Q.-G. Ning and T.-W. Chou, J. Compos. Mater., 29, 2280 (1995).CrossRefGoogle Scholar
  28. (28).
    U. I. Thomann, M. Sauter, and P. Ermanni, Compos. Sci. Technol., 64, 1637 (2004).CrossRefGoogle Scholar
  29. (29).
    I. J. Turias, J. M. Gutierrez, and P. L. Galindo, Compos. Sci. Technol., 65, 609 (2005).CrossRefGoogle Scholar
  30. (30).
    H. Hatta and M. Taya, J. Appl. Phys., 58, 2478 (1985).CrossRefGoogle Scholar
  31. (31).
    J. R. Gaier, Y. Y. Vandenberg, S. Berkebile, H. Stueben, and F. Balagadde, Carbon, 41, 2187 (2003).CrossRefGoogle Scholar
  32. (32).
    G. E. Youngblood, D. J. Senor, R. H. Jones, and S. Graham, Compos. Sci. Technol., 62, 1127 (2002).CrossRefGoogle Scholar
  33. (33).
    Q.-G. Ning and T.-W. Chou, Compos. Part A, 29A, 315 (1998).CrossRefGoogle Scholar
  34. (34).
    H. Hatta and M. Taya, Int. J. Eng. Sci., 24, 1159 (1986).CrossRefGoogle Scholar
  35. (35).
    J. Schuster, D. Heider, and K. Sharp, Compos. Sci. Technol., 68, 2085 (2008).CrossRefGoogle Scholar
  36. (36).
    Y. M. Shabana and N. Noda, Int. J. Solids Struct., 45, 3494 (2008).CrossRefGoogle Scholar
  37. (37).
    T. Hara, S. Kamijima, and Y. Shimura, Electrochem. Solid-State Lett., 6, C8 (2003).CrossRefGoogle Scholar
  38. (38).
    J.-L. Auriault and H. I. Ene, Int. J. Heat Mass Transfer, 37, 2885 (1994).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Materials Architecturing Research CenterKorea Institute of Science and TechnologySeoulKorea
  2. 2.Department of Materials Science and EngineeringYonsei UniversitySeoulKorea
  3. 3.Department of Organic and Nano EngineeringHanyang UniversitySeoulKorea
  4. 4.Nanomaterials Science and EngineeringUniversity of Science and TechnologyDaejeonKorea
  5. 5.KU-KIST Graduate School of Science and TechnologyKorea UniversitySeoulKorea

Personalised recommendations