Skip to main content
Log in

Cationic comb-type copolymer promotes DNA assembly on gold nanoparticles while enhancing particle dispersibility

  • Communication
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We previously reported that graft copolymers comprised of a cationic backbone and abundant grafts of hydrophilic dextran formed soluble interpolyelectrolyte complexes with anionic biopolymers and facilitated self-assembly and folding of the biopolymers, such as duplex formation of DNA and helical folding of a peptide. In this study, effects of the cationic graft copolymers on assembly of gold nanoparticles (AuNPs) and that of DNA on AuNPs were explored. While polylysine homopolymer caused aggregation of AuNP, the graft copolymer did not induce the aggregation as monitored by adsorption spectra. The highly-grafted copolymer at nano molar concentration was capable of suppressing AuNP aggregation induced by 3 M NaCl. Moreover, the copolymer did not cause aggregation of AuNPs whose surface were modified with oligonucleotides (ODN) having highly negative charges. In the presence of copolymer, melting temperature of DNA duplex formed between AuNP-ODN and its complementary ODN was increased about 10 °C, indicating that the copolymer enhanced stability of DNA duplex on the surface of AuNPs. It was concluded that the copolymer selectively promoted assembly of negatively charged DNA but inhibited aggregation of negatively charged AuNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, Angew. Chem. Int. Ed., 49, 3280 (2010).

    Article  CAS  Google Scholar 

  2. M. C. M. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004).

    Article  CAS  Google Scholar 

  3. K. Zagorovsky and W. C. W. Chan, Angew. Chem. Int. Ed., 52, 3168 (2013).

    Article  CAS  Google Scholar 

  4. S. K. Ghosh and T. Pal, Chem. Rev., 107, 4797 (2007).

    Article  CAS  Google Scholar 

  5. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, J. Am. Chem. Soc., 122, 4640 (2000).

    Article  CAS  Google Scholar 

  6. G. Frens, Nat. Phys. Sci., 241, 20 (1973).

    Article  CAS  Google Scholar 

  7. B. V. Enustun, J. Turkevich, J. Am. Chem. Soc., 85, 3317 (1963).

    Article  CAS  Google Scholar 

  8. M. Zheng, F. Davidson, and X. Huang, J. Am. Chem. Soc., 125, 7790 (2003).

    Article  CAS  Google Scholar 

  9. K. Kusolkamabot, P. Sae-ung, N. Niamnont, K. Wongravee, M. Sukwattanasinitt, and V. P. Hoven, Langmuir, 29, 12317 (2013).

    Article  CAS  Google Scholar 

  10. V. A. Bloomfield, Biopolymers, 44, 269 (1997).

    Article  CAS  Google Scholar 

  11. A. Maruyama, H. Watanabe, A. Ferdous, M. Kato, T. Ishihara, and T. Akaike, Bioconjug. Chem., 9, 292 (1998).

    Article  CAS  Google Scholar 

  12. Y. I. Sato, Y. Kobayashi, T. Kamiya, H. Watanabe, T. Akaike, K. Yoshikawa, and A. Maruyama, Biomaterials, 26, 703 (2005).

    Article  CAS  Google Scholar 

  13. L. Wu, N. Shimada, A. Kano, and A. Maruyama, Soft Matter, 4, 744 (2008).

    Article  CAS  Google Scholar 

  14. H. Torigoe, A. Ferdous, H. Watanabe, T. Akaike, and A. Maruyama, J. Biol. Chem., 274, 6161 (1999).

    Article  CAS  Google Scholar 

  15. R. Moriyama, N. Shimada, A. Kano, and A. Maruyama, Biomaterials, 32, 2351 (2011).

    Article  CAS  Google Scholar 

  16. N. Shimada, H. Kinoshita, S. Tokunaga, T. Umegae, N. Kume, W. Sakamoto, and A. Maruyama, J. Control. Release, 45, 218 (2015).

    Google Scholar 

  17. C. Perrino, S. Lee, S. W. Choi, A. Maruyama, and N. D. Spencer, Langmuir, 24, 8850 (2008).

    Article  CAS  Google Scholar 

  18. W. Zhou, X. Gao, D. Liu, and X. Chen, Chem. Rev., 115, 10575 (2015).

    Article  CAS  Google Scholar 

  19. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, Nat. Nanotechnol., 6, 268 (2011).

    Article  CAS  Google Scholar 

  20. X. Zhang, M. R. Servos, and J. Liu, J. Am. Chem. Soc., 134, 9910 (2012).

    Article  CAS  Google Scholar 

  21. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science, 277, 1078 (1997).

    Article  CAS  Google Scholar 

  22. L. H. Tan, H. Xing, H. Chen, and Y. Lu, J. Am. Chem. Soc., 135, 17675 (2013).

    Article  CAS  Google Scholar 

  23. S. Song, Z. Liang, J. Zhang, L. Wang, G. Li, and C. Fan, Angew. Chem. Int. Ed., 48, 8670 (2009).

    Article  CAS  Google Scholar 

  24. A. Maruyama, Y. Ohnishi, H. Watanabe, H. Torigoe, A. Ferdous, and T. Akaike, Colloids Surf. B, 16, 273 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Maruyama.

Additional information

Acknowledgments: We acknowledge financial support from Grants-in-Aid for Scientific Research on Innovative Areas “Molecular Robotics” (No. 15H00804) and “Nanomedicine Molecular Science” (No. 23107007), the Cooperative Research Program of “Network Joint Research Center for Materials and Devices” from the Ministry of Education, Culture, Sports, Science and Technology, the Center of Innovation (COI) Program, Japan Science and Technology Agency (JST), and KAKENHI (No. 15H01807, 16K01389) from Japan Society for the Promotion of Science.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, H., Shimada, N. & Maruyama, A. Cationic comb-type copolymer promotes DNA assembly on gold nanoparticles while enhancing particle dispersibility. Macromol. Res. 25, 500–503 (2017). https://doi.org/10.1007/s13233-017-5112-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5112-y

Keywords

Navigation