Macromolecular Research

, Volume 25, Issue 9, pp 871–881 | Cite as

Synthesis and characterization of crosslinked transparent poly(ester-urethane-acrylate) containing methyl methacrylate

  • Shyam Dev Maurya
  • Surendra K. Kurmvanshi
  • Smita Mohanty
  • Sanjay K Nayak


The current study deals with the synthesis of various compositions of crosslinked poly(ester-urethane-acrylate) (PEUA)/methylmethacrylate (MMA) copolymer employing free radical polymerization. Initially, (1,4-butanediol) orthophthalate (BPE) polyester polyol has been synthesized by reacting 1,4 butanediol (BDO) and phthalic anhydride (PA). Subsequently the PEUA prepolymer was formed by reacting one mole of BPE with two mole of isophorone diisocyanate (IPDI) followed by end capping with two mole of 2-hydroxyethyl methacrylate (HEMA) in the presence of dibutyltin dilaurate (DBTL) catalyst. Finally, different compositions of crosslinked PEUA/MMA copolymer were prepared by reacting the PEUA prepolymer with MMA, in the presence of 1% azobisisobutyronitrile (AIBN) (w/w) as a chain initiator. The formation of BPE, PEUA and copolymers was confirmed by Fourier transform infrared (FT-IR) and 1H NMR spectroscopy. Water uptake, mechanical, thermal and optical properties of PEUA, PMMA and their copolymers have been also investigated. The impact fractured surface morphology of copolymers was observed using scanning electron microscope (SEM). The results showed that the increased miscibility, improved mechanical and physical properties of copolymer was influenced by the crosslink density. Dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), Haze and transparency of PEUA/MMAcopolymers were determined. The copolymer with 40 wt% MMA loading exhibited optimum mechanical and physical properties with respect to the other compositions.


poly(ester-urethane-acrylate)/MMA copolymer crosslinked density transparency mechanical properties thermal properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    L. Gao, L. Zhou, S. Fang, C. Wu, L. Guo, G. Sun, and S. Ma, J. Polym. Res., 18, 833 (2011).CrossRefGoogle Scholar
  2. (2).
    D. H. Park, J. K. Oh, S. B. Kim, and W. N. Kim, Macromol. Res., 21, 1247 (2013).CrossRefGoogle Scholar
  3. (3).
    S. W. Lee, Y. H. Lee, H. Park, and H. D. Kim, Macromol. Res., 21, 709 (2013).CrossRefGoogle Scholar
  4. (4).
    Y. C. Chung, H. Y. Kim, J. W. Choi, and B. C. Chun, Macromol. Res., 22, 1115 (2014).CrossRefGoogle Scholar
  5. (5).
    M. L. Digar, S. L. Hung, T. C. Wen, and A. Gopalan, Polymer, 43, 1615 (2002).CrossRefGoogle Scholar
  6. (6).
    Y. H. Lin, K. H. Liao, N. K. Chou, S. S. Wang, S. H. Chu, and K. H. Hsieh, Eur. Polym. J., 44, 2927 (2008).CrossRefGoogle Scholar
  7. (7).
    M. Manju, M. K. Veeraiah, S. Prasannakumar, N. M. Gowda, and B. S. Sherigara, Am. J. Polym. Sci., 2, 22 (2012).CrossRefGoogle Scholar
  8. (8).
    P. Santhana Gopala Krishnan, V. Choudhary, and I. K. Varma, J. Appl. Polym. Sci., 48, 1015 (1993).CrossRefGoogle Scholar
  9. (9).
    S. Velankar, J. Pazos, and S. L. Cooper, J. Appl. Polym. Sci., 62, 1361 (1996).CrossRefGoogle Scholar
  10. (10).
    J. Skrzypek, J. Z. Sadłowski, M. Lachowska, and M. Turzański, Chem. Eng. Process. Process Intensif., 33, 413 (1994).CrossRefGoogle Scholar
  11. (11).
    S. Guo, S. Zhou, H. Li, and B. You, J. Colloid Interface Sci., 448, 123 (2015).CrossRefGoogle Scholar
  12. (12).
    R. Ballestero, B. M. Sundaram, H. V. Tippur, and M. L. Auad, Express Polym. Lett., 10, 204 (2016).CrossRefGoogle Scholar
  13. (13).
    M. R. Patel, J. M. Shukla, N. K. Patel, and K. H. Patel, Mater. Res., 12, 385 (2009).CrossRefGoogle Scholar
  14. (14).
    O. Coutelier, M. El Ezzi, M. Destarac, F. Bonnette, T. Kato, A. Baceiredo, and D. Taton, Polym. Chem., 3, 605 (2012).CrossRefGoogle Scholar
  15. (15).
    O. R. Pardini and J. I. Amalvy, J. Appl. Polym. Sci., 107, 1207 (2008).CrossRefGoogle Scholar
  16. (16).
    N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1975.Google Scholar
  17. (17).
    H. S. Suh, J. Y. Ha, J. H. Yoon, C. S. Ha, H. Suh, and I. Kim, React. Funct. Polym., 70, 288 (2010).CrossRefGoogle Scholar
  18. (18).
    M. Sultan, H. N. Bhatti, M. Zuber, and M. Barikani, Korean J. Chem. Eng., 30, 488 (2013).CrossRefGoogle Scholar
  19. (19).
    A. Bahadur, M. Shoaib, A. Saeed, and S. Iqbal, e-Polymers, 16, 463 (2016).CrossRefGoogle Scholar
  20. (20).
    J. Huang and L. Zhang, Polymer, 43, 2287 (2002).CrossRefGoogle Scholar
  21. (21).
    S. D. Maurya, M. Purushothaman, P. S. G. Krishnan, and S. K. Nayak, J. Thermoplast. Compos. Mater., 0892705712475011 (2013).Google Scholar
  22. (22).
    A. K. Tyagi, V. Choudhary, and I. K. Varma, Eur. Polym. J., 30, 919 (1994).CrossRefGoogle Scholar
  23. (23).
    Y. D. Ma, T. Fukuda, and H. Inagaki, Polym. J., 15, 673 (1983).CrossRefGoogle Scholar
  24. (24).
    T. Zhang, W. Wu, X. Wang, and Y. Mu, Prog. Org. Coat., 68, 201 (2010).CrossRefGoogle Scholar
  25. (25).
    M. Zuber, S. A. A. Shah, T. Jamil, and M. I. Asghar, Int. J. Biol. Macromol., 67, 254 (2014).CrossRefGoogle Scholar
  26. (26).
    J. L. Zhang, D. M. Wu, D. Y. Yang, and F. X. Qiu, J. Polym. Environ., 18, 128 (2010).CrossRefGoogle Scholar
  27. (27).
    K. P. Mahesh, M. Alagar, and S. A. Kumar, Polym. Adv. Technol., 14, 137 (2003).CrossRefGoogle Scholar
  28. (28).
    D. Jehl, J. M. Widmaier, and G. C. Meyer, Eur. Polym. J., 19, 597 (1983).CrossRefGoogle Scholar
  29. (29).
    M. H. Gutierrez-Villarreal, and J. Rodríguez-Velazquez, J. Appl. Polym. Sci., 105, 2370 (2007).CrossRefGoogle Scholar
  30. (30).
    X. Hu and R. J. Young, Plast. Rubber Process. Appl., 12, 113 (1989).Google Scholar
  31. (31).
    W. J. Lee, E. S. Kuo, C. Y. Chao, and Y. P. Kao, Holzforschung, 69, 547 (2015).CrossRefGoogle Scholar
  32. (32).
    S. Tasic, B. Bozic, and B. Dunjic, Prog. Org. Coat., 51, 320 (2004).CrossRefGoogle Scholar
  33. (33).
    B. Dunjic, S. Tasic, and B. B. ic, Eur. Coatings J., 6, 36 (2004).Google Scholar
  34. (34).
    R. Chen, C. Zhang, and M. R. Kessler, RSC Adv., 4, 35476 (2014).CrossRefGoogle Scholar
  35. (35).
    L. J. Chen, Q. L. Tai, L. Song, W. Y. Xing, G. X. Jie, and Y. Hu, Express Polym. Lett., 4, 53 (2010).CrossRefGoogle Scholar
  36. (36).
    D. Kunwong, N. Sumanochitraporn, and S. Kaewpirom, Sonklanakarin J. Sci. Technol., 33, 201 (2011).Google Scholar
  37. (37).
    M. Liu, C. Chen, W. X. Li, X. Zhu, S. Li, and C. L. Zheng, e-Polymers, 17, 31 (2017).Google Scholar
  38. (38).
    M. M. Eldin, M. R. Elaassar, A. A. Elzatahry, and M. M. B. Al-Sabah, Arabian J. Chemistry, doi: 10.1016/j.arabjc.2014.10.037 (2014).Google Scholar
  39. (39).
    S. Qiu, S. Li, Y. Tao, X. Feng, B. Yu, X. Mu, and G. Jie, RSC Adv., 5, 73775 (2015).CrossRefGoogle Scholar
  40. (40).
    S. N. Tripathi, P. Saini, D. Gupta, and V. Choudhary, J. Mater. Sci., 48, 6223 (2013).CrossRefGoogle Scholar
  41. (41).
    N. Fu, G. Li, Q. Zhang, N. Wang, and X. Qu, RSC Adv., 4, 1067 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Shyam Dev Maurya
    • 1
  • Surendra K. Kurmvanshi
    • 2
  • Smita Mohanty
    • 1
    • 2
  • Sanjay K Nayak
    • 1
    • 2
  1. 1.Central Institute of Plastics Engineering & TechnologyGuindy, ChennaiIndia
  2. 2.Laboratory for Advanced Research in Polymeric MaterialsR&D wing of CIPETBhubaneswarIndia

Personalised recommendations