Macromolecular Research

, Volume 25, Issue 9, pp 882–889 | Cite as

Targeted doxorubicin delivery based on avidin-biotin technology in cervical tumor cells

  • Seong-Cheol Park
  • Young-Min Kim
  • Nam-Hong Kim
  • Eun-Ji Kim
  • Yung-Hoon Park
  • Jung Ro Lee
  • Mi-Kyeong Jang
Article
  • 123 Downloads

Abstract

Targeting antitumor drugs to specific tissues or cells has attracted considerable interest in the recent tumor therapy because it can reduce the side effects in the body and the treated drug dosage through homing drug to the desired tissues. To utilize the high affinity of biotin to avidin as a drug carrier for doxorubicin (DOX), biotinylated targeting material (biotin-polyethylene glycol (PEG)-folic acid, BPF) and biotinylated drug with a bioreducible linker (biotin-SS-PEG-DOX, BSPD) were designed in this study. The in vitro cellular uptake of the avidin/biotinylated drug complexes showed that the complexes with BPF were internalized dose-dependently into HeLa cells, while their uptake was not detected in the absence of BPF. Although the anti-tumor activity of the drug complexes with BPF and BSPD were similar to that of free DOX in cervical cancer cells, the cytotoxic effect of DOX was significantly reduced in normal cells. Their targeting antitumor effect revealed the significant inhibition of the increasing tumor size in HeLa-xenograft mouse model. These results show that the strong complexing between avidin and biotin acted as a targeting moiety and the antitumor drug is an adaptable tool in the fields of tumor therapy.

Keywords

avidin biotin cervical cancer doxorubicin folic acid xenograft 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M. L. Rothenberg, D. P. Carbone, and D. H. Johnson, Nat. Rev. Cancer, 3, 303 (2003).CrossRefGoogle Scholar
  2. (2).
    J. P. Nam, S. C. Park, T. H. Kim, J. Y. Jang, C. Choi, M. K. Jang, and J. W. Nah, Int. J. Pharm., 457, 124 (2013).CrossRefGoogle Scholar
  3. (3).
    D. Chen, P. Song, F. Jiang, X. Meng, W. Sui, C. Shu, and L. J. Wan, J. Phys. Chem. B, 117, 1261 (2013).CrossRefGoogle Scholar
  4. (4).
    Y. Z. Du, L. L. Cai, J. Li, M. D. Zhao, F. Y. Chen, H. Yuan, and F. Q. Hu, Int. J. Nanomedicine, 6, 1559 (2011).CrossRefGoogle Scholar
  5. (5).
    R. Yang, F. Meng, S. Ma, F. Huang, H. Liu, and Z. Zhong, Biomacromolecules, 12, 3047 (2011).CrossRefGoogle Scholar
  6. (6).
    S. S. Yu, C. M. Lau, W. J. Barham, H. M. Onishko, C. E. Nelson, H. Li, C. A. Smith, F. E. Yull, C. L. Duvall, and T. D. Giorgio, Mol. Pharm., 10, 975 (2013).CrossRefGoogle Scholar
  7. (7).
    P. Yousefpour, F. Atyabi, E. Vasheghani-Farahani, A. A. Movahedi, and R. Dinarvand, Int. J. Nanomedicine, 6, 1977 (2011).Google Scholar
  8. (8).
    D. H. Park, J. Cho, O. J. Kwon, C. O. Yun, and J. H. Choy, Angew. Chem. Int. Ed. Engl., 55, 4582 (2016).CrossRefGoogle Scholar
  9. (9).
    C. Su, H. Li, Y. Shi, G. Wang, L. Liu, L. Zhao, and R. Su, Int. J. Pharm., 474, 202 (2014).CrossRefGoogle Scholar
  10. (10).
    H. Wang, P. Zhao, X. Liang, X. Gong, T. Song, R. Niu, and J. Chang, Biomaterials, 31, 4129 (2010).CrossRefGoogle Scholar
  11. (11).
    M. Garcia-Fuentes and M. J. Alonso, J. Control. Release, 161, 496 (2012).CrossRefGoogle Scholar
  12. (12).
    S. C. Park, J. P. Nam, Y. M. Kim, J. H. Kim, J. W. Nah, and M. K. Jang, Int. J. Nanomedicine., 8, 3663 (2013).Google Scholar
  13. (13).
    S. J. Knox, M. L. Goris, M. Tempero, P. L. Weiden, L. Gentner, H. Breitz, G. P. Adams, D. Axworthy, S. Gaffigan, K. Bryan, D. R. Fisher, D. Colcher, I. D. Horak, and L. M. Weiner, Clin. Cancer Res., 6, 406 (2000).Google Scholar
  14. (14).
    P. Macor, C. Tripodo, S. Zorzet, E. Piovan, F. Bossi, R. Marzari, A. Amadori, and F. Tedesco, Cancer Res., 7, 10556 (2007).CrossRefGoogle Scholar
  15. (15).
    J. R. Newton-Northup, S. D. Figueroa, T. P. Quinn, and S. L. Deutscher, Nucl. Med. Biol., 36, 789 (2009).CrossRefGoogle Scholar
  16. (16).
    H. P. Lesch, M. U. Kaikkonen, J. T. Pikkarainen, and S. Yla-Herttuala, Expert Opin. Drug Deliv., 7, 551 (2010).CrossRefGoogle Scholar
  17. (17).
    X. Xu, Y. Zhang, X. Wang, X. Guo, X. Zhang, Y. Qi, and Y. M. Shen, Bioorg. Med. Chem., 19, 1643 (2011).CrossRefGoogle Scholar
  18. (18).
    M. Mamede, T. Saga, T. Ishimori, T. Higashi, N. Sato, H. Kobayashi, M. W. Brechbiel, and J. Konishi, J. Control. Release, 95, 133 (2004).CrossRefGoogle Scholar
  19. (19).
    K. H. Jung, J. W. Park, J. Y. Paik, C. H. Quach, Y. S. Choe, and K. H. Lee, Nucl. Med. Biol., 39, 1122 (2012).CrossRefGoogle Scholar
  20. (20).
    C. L. Zavaleta, W. T. Phillips, A. Soundararajan, and B. A. Goins, Int. J. Pharm., 337, 316 (2007).CrossRefGoogle Scholar
  21. (21).
    Y.-S. Kang, Y. Saito, and W. M. Pardridge, J. Drug Target, 3, 159 (1995).CrossRefGoogle Scholar
  22. (22).
    S. F. Rosebrough, Nucl. Med. Biol., 20, 663 (1993).CrossRefGoogle Scholar
  23. (23).
    S. Ojha, H. Al Taee, S. Goyal, U. B. Mahajan, C. R. Patil, D. S. Arya, and M. Rajesh, Oxid. Med. Cell Longev., 2016, 5724973 (2016).Google Scholar
  24. (24).
    F. S. Carvalho, A. Burgeiro, R. Garcia, A. J. Moreno, R. A. Carvalho, and P. J. Oliveira, Med. Res. Rev., 34, 106 (2014).CrossRefGoogle Scholar
  25. (25).
    M. S. Ewer and S. M. Ewer, Nat. Rev. Cardiol., 7, 564 (2010).CrossRefGoogle Scholar
  26. (26).
    A. Jain and K. Cheong, J. Control. Release, 245, 27 (2017).CrossRefGoogle Scholar
  27. (27).
    M. Nakaki, H. Takikawa, and M. J. Yamanaka, J. Int. Med. Res., 25, 14 (1997).CrossRefGoogle Scholar
  28. (28).
    P. Caliceti, M. Chinol, M. Roldo, F. M. Veronese, A. Semenzato, S. Salmaso, and G. Paganelli, J. Control. Release, 83, 97 (2002).CrossRefGoogle Scholar
  29. (29).
    L. Bu, L. C. Gan, X. Q. Guo, F. Z. Chen, Q. Song, Qi-Zhao, X. J. Gou, S. X. Hou, and Q. Yao, Int. J. Pharm., 452, 355 (2013).CrossRefGoogle Scholar
  30. (30).
    F. Yan, L. Li, Z. Deng, Q. Jin, J. Chen, W. Yang, C. K. Yeh, J. Wu, R. Shandas, X. Liu, and H. Zheng, J. Control. Release, 166, 246 (2013).CrossRefGoogle Scholar
  31. (31).
    Y. Cui, Y. Li, Q. Duan, and T. Kakuchi, Appl. Biochem. Biotechnol., 169, 239 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Seong-Cheol Park
    • 1
  • Young-Min Kim
    • 1
  • Nam-Hong Kim
    • 1
  • Eun-Ji Kim
    • 1
  • Yung-Hoon Park
    • 1
  • Jung Ro Lee
    • 2
  • Mi-Kyeong Jang
    • 1
  1. 1.Department of Polymer Science and Engineering, College of EngineeringSunchon National UniversitySuncheon, JeonnamKorea
  2. 2.National Institute of EcologyChungnamKorea

Personalised recommendations