Advertisement

Macromolecular Research

, Volume 25, Issue 9, pp 931–935 | Cite as

Dependence of cross-termination rate on RAFT agent concentration in RAFT polymerization

Article

Abstract

Rate retardation is an intrinsic property of reversible addition-fragmentation chain transfer (RAFT) radical polymerization. One of reasons for this phenomenon is cross-termination reaction between intermediate radicals and other active radicals. With the help of Stationary State Model and experimentally controlling on k t,cross , the kinetics of styrene RAFT polymerization were performed at different concentrations of RAFT agent. Results show that there is a difference in two effects of cross-termination rate coefficient and concentration of intermediate radicals on cross-termination at different RAFT agent concentrations: at the low concentration range, the cross-termination reaction is mainly affected by its rate coefficient, and at the high concentration range, the cross-termination reaction is mainly affected by the concentration of the intermediate radicals. It shows that there is an optimal concentrations of RAFT agent for a RAFT polymerization with the least rate retardation by considering the balance between these two effects.

Keywords

reversible addition-fragmentation chain transfer (RAFT) radical polymerization rate retardation cross-termination RAFT agent concentrations intermediate radicals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 31, 5559 (1998).CrossRefGoogle Scholar
  2. (2).
    G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem., 58, 379 (2005).CrossRefGoogle Scholar
  3. (3).
    S. Perrier and P. Takolpuckdee, J. Polym. Sci., Part A: Polym. Chem., 43, 5347 (2005).CrossRefGoogle Scholar
  4. (4).
    A. Gregory and M. H. Stenzel, Prog. Polym. Sci., 37, 38 (2012).CrossRefGoogle Scholar
  5. (5).
    M. J. Monteiro and H. de Brouwer, Macromolecules, 34, 349 (2001).CrossRefGoogle Scholar
  6. (6).
    A. Feldermann, M. L. Coote, M. H. Stenzel, T. P. Davis, and C. Barner-Kowollik, J. Am. Chem. Soc., 126, 15915 (2004).CrossRefGoogle Scholar
  7. (7).
    G. Moad, J. Chiefari, J. Krstina, R. T. A. Mayadunne, A. Postma, E. Rizzardo, and S. H. Thang, Polym. Int., 49, 993 (2000).CrossRefGoogle Scholar
  8. (8).
    C. Barner-Kowollik, J. F. Quinn, T. U. Nguyen, J. P. Heuts, and T. P. Davis, Macromolecules, 34, 7849 (2001).CrossRefGoogle Scholar
  9. (9).
    D. Konkolewicz, B. S. Hawkett, A. Grayweale, and S. Perrier, Macromolecules, 41, 6400 (2008).CrossRefGoogle Scholar
  10. (10).
    D. Konkolewicz, B. S. Hawkett, A. Gray-Weale, and S. Perrier, J. Polym. Sci., Part A: Polym. Chem., 47, 3455 (2009).CrossRefGoogle Scholar
  11. (11).
    S. S. Ting, T. P. Davis, and P. B. Zetterlund, Macromolecules, 44, 4187 (2011).CrossRefGoogle Scholar
  12. (12).
    C. Barner-Kowollik, J. F. Quinn, D. R. Morsley, and T. P. Davis, J. Polym. Sci., Part A: Polym. Chem., 39, 1353 (2001).CrossRefGoogle Scholar
  13. (13).
    C. Barner-Kowollik, M. Buback, B. Charleux, M. L. Coote, M. Drache, T. Fukuda, A. Goto, B. Klumperman, A. B. Lowe, and J. B. Mcleary, J. Polym. Sci., Part A: Polym. Chem., 44, 5809 (2006).CrossRefGoogle Scholar
  14. (14).
    A. Goto, K. Sato, Y. Tsujii, T. Fukuda, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 34, 402 (2001).CrossRefGoogle Scholar
  15. (15).
    M. L. Coote, E. H. Krenske, and E. I. Izgorodina, Macromol. Rapid Commun., 27, 473 (2006).CrossRefGoogle Scholar
  16. (16).
    Y. Kwak, A. Goto, Y. Tsujii, Y. Murata, K. Komatsu, and T. Fukuda, Macromolecules, 35, 3026 (2002).CrossRefGoogle Scholar
  17. (17).
    F. Calitz, M. Tonge, and R. Sanderson, Macromolecules, 36, 5 (2003).CrossRefGoogle Scholar
  18. (18).
    F. Calitz, M. Tonge, and R. Sanderson, Macromol. Symp., 193, 277 (2003).CrossRefGoogle Scholar
  19. (19).
    W. Meiser, J. Barth, M. Buback, H. Kattner, and P. Vana, Macromolecules, 44, 2474 (2011).CrossRefGoogle Scholar
  20. (20).
    E. Chernikova, V. Golubev, A. Filippov, C. Y. Lin, and M. L. Coote, Polym. Chem., 1, 1437 (2010).CrossRefGoogle Scholar
  21. (21).
    W. Meiser and M. Buback, Macromol. Rapid Commun., 32, 1490 (2011).CrossRefGoogle Scholar
  22. (22).
    W. Meiser, M. Buback, O. Ries, C. Ducho, and A. Sidoruk, Macromol. Chem. Phys., 214, 924 (2013).CrossRefGoogle Scholar
  23. (23).
    V. Golubev, A. Filippov, E. Chernikova, M. Coote, C.-Y. Lin, and G. Gryn’ova, Polym. Sci. Ser. C, 53, 14 (2011).CrossRefGoogle Scholar
  24. (24).
    K. Ranieri, G. Delaittre, C. Barner-Kowollik, and T. Junkers, Macromol. Rapid Commun., 35, 2023 (2014).CrossRefGoogle Scholar
  25. (25).
    J. McLeary, J. McKenzie, M. Tonge, R. Sanderson, and B. Klumperman, Chem. Commun., 10,1950 (2004).CrossRefGoogle Scholar
  26. (26).
    J. B. McLeary, M. P. Tonge, and B. Klumperman, Macromol. Rapid Commun., 27, 1233 (2006).CrossRefGoogle Scholar
  27. (27).
    E. T. van den Dungen, H. Matahwa, J. B. McLeary, R. D. Sanderson, and B. Klumperman, J. Polym. Sci., Part A: Polym. Chem., 46, 2500 (2008).CrossRefGoogle Scholar
  28. (28).
    E. Sivtsov, A. Gostev, E. Parilova, A. Dobrodumov, and E. Chernikova, Polym. Sci. Ser. C, 57, 110 (2015).CrossRefGoogle Scholar
  29. (29).
    G. Moad, Macromol. Chem. Phys., 215, 9 (2014).CrossRefGoogle Scholar
  30. (30).
    L. Lv, W. Wu, G. Zou, and Q. Zhang, Polym. Chem., 4, 908 (2013).CrossRefGoogle Scholar
  31. (31).
    L. Lv, J. Zhou, G. Zou, and Q. Zhang, Macromol. Chem. Phys., 216, 614 (2015).CrossRefGoogle Scholar
  32. (32).
    J. T. Lai, D. Filla, and R. Shea, Macromolecules, 35, 6754 (2002).CrossRefGoogle Scholar
  33. (33).
    Y. Kwak, A. Goto, and T. Fukuda, Macromolecules, 37, 1219 (2004).CrossRefGoogle Scholar
  34. (34).
    E. Chernikova, P. Terpugova, E. Garina, and V. Golubev, Polym. Sci. Ser. A, 49, 108 (2007).CrossRefGoogle Scholar
  35. (35).
    N. J. Turro and B. Kraeutler, Acc. Chem. Res., 13, 369 (1980).CrossRefGoogle Scholar
  36. (36).
    I. V. Khudyakov, Y. A. Serebrennikov, and N. J. Turro, Chem. Rev., 93, 537 (1993).CrossRefGoogle Scholar
  37. (37).
    O. F. Olaj, P. Vana, M. Zoder, A. Kornherr, and G. Zifferer, Macromol. Rapid commun., 21, 913 (2000).CrossRefGoogle Scholar
  38. (38).
    X. Han, J. Fan, J. He, J. Xu, D. Fan, and Y. Yang, Macromolecules, 40, 5618 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei, AnhuiP. R. China

Personalised recommendations