Macromolecular Research

, Volume 25, Issue 9, pp 905–912 | Cite as

Hydroxyapatite nucleation and growth on collagen electrospun fibers controlled with different mineralization conditions and phosvitin

  • Yilin Jie
  • Zhaoxia Cai
  • Shanshan Li
  • Zhuqing Xie
  • Meihu Ma
  • Xi Huang


In a tenfold-concentrated simulated body fluid, a strategy for rapid deposition of a biomimetic calcium phosphate layer on the scaffolds of electrospun collagen nanofiber membranes was developed. The aim of this study was to explore the effects of mineralization conditions and phosvitin (PV) on hydroxyapatite nucleation and growth. The mineralization model, the pH of the environment, and the deposition time were optimized. Scanning electron microscopy (SEM) images demonstrated that homogeneous and well-crystallized inorganic mineral layers were generated in the dynamic mineralization model system after incubating 3 h at pH 5.7. PV, which possesses the highest level of phosphorylation among egg proteins, was used as a model protein to investigate the contribution of PV in the mineralization process. The morphological structure and composition of the collagen/calcium phosphate composite nanofibers were also characterized by energy dispersive spectroscopy, scanning photoelectron spectrometer, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. XRD results showed the transformation process of mineralization materials from dicalcium phosphate dihydrate (DCPD) to HA through the changes of characteristic peaks at approximately 11° of DCPD and 31.8° of HA. 1.0 mg/mL. Phosvitin significantly promoted the phase transformation from DCPD to hydroxyapatite. High performance liquid chromatography results indicated that PV induced the mineralization rather than being the part of the hydroxyapatite. The minerals formed on electrospun collagen nanofiber membranes were identified to be from hydroxyapatite. These findings extended the potential application field of PV to biomimetic material.


collagen electrospun fibers biomineralization 10SBF hydroxyapatite phosvitin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2017_5091_MOESM1_ESM.pdf (505 kb)
Supplementary material, approximately 228 KB.


  1. (1).
    M. J. Olszta, X. Cheng, S. S. Jee, R. Kumar, Y.-Y. Kim, M. J. Kaufman, E. P. Douglas, and L. B. Gower, Mater. Sci. Eng. R: Rep., 58, 77 (2007).CrossRefGoogle Scholar
  2. (2).
    A. George and A. Veis, Chem. Rev., 108, 4670 (2008).CrossRefGoogle Scholar
  3. (3).
    Y. Cai and J. Yao, Nanoscale, 2, 1842 (2010).CrossRefGoogle Scholar
  4. (4).
    S. Gajjeraman, K. Narayanan, J. Hao, C. Qin, and A. George, J. Biological Chem., 282, 1193 (2007).CrossRefGoogle Scholar
  5. (5).
    J. Venugopal, M. P. Prabhakaran, Y. Zhang, S. Low, A. T. Choon, and S. Ramakrishna, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., 368, 2065 (2010).CrossRefGoogle Scholar
  6. (6).
    L. Chen, R. Jacquet, E. Lowder, and W. J. Landis, Bone, 71, 7 (2015).CrossRefGoogle Scholar
  7. (7).
    D. W. Hutmacher, Biomaterials, 21, 2529 (2000).CrossRefGoogle Scholar
  8. (8).
    K. Bleek and A. Taubert, Acta Biomater., 9, 6283 (2013).CrossRefGoogle Scholar
  9. (9).
    F. Nudelman, A. J. Lausch, N. A. Sommerdijk, and E. D. Sone, J. Struct. Biol., 183, 258 (2013).CrossRefGoogle Scholar
  10. (10).
    J. D. Kretlow and A. G. Mikos, Tissue Eng., 13, 927 (2007).CrossRefGoogle Scholar
  11. (11).
    W. Cui, X. Li, C. Xie, H. Zhuang, S. Zhou, and J. Weng, Biomaterials, 31, 4620 (2010).CrossRefGoogle Scholar
  12. (12).
    Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 12, 1197 (2006).CrossRefGoogle Scholar
  13. (13).
    D. B. Khadka and D. T. Haynie, Nanomedicine, 8, 1242 (2012).CrossRefGoogle Scholar
  14. (14).
    D. Liang, B. S. Hsiao, and B. Chu, Adv. Drug Deliv. Rev., 59, 1392 (2007).CrossRefGoogle Scholar
  15. (15).
    K. Hofman, N. Tucker, J. Stanger, M. Staiger, S. Marshall, and B. Hall, J. Mater. Sci., 47, 1148 (2012).CrossRefGoogle Scholar
  16. (16).
    Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z. M. Huang, J. Biomed. Mater. Res. Part B: Appl. Biomater., 72, 156 (2005).CrossRefGoogle Scholar
  17. (17).
    F. Chicatun, C. E. Pedraza, C. E. Ghezzi, B. Marelli, M. T. Kaartinen, M. D. McKee, and S. N. Nazhat, Biomacromolecules, 12, 2946 (2011).CrossRefGoogle Scholar
  18. (18).
    M. G. Dunn and F. H. Silver, Connect. Tissue Res., 12, 59 (1983).CrossRefGoogle Scholar
  19. (19).
    D. A. Cisneros, C. Hung, C. M. Franz, and D. J. Muller, J. Struct. Biol., 154, 232 (2006).CrossRefGoogle Scholar
  20. (20).
    W. J. Landis and F. H. Silver, Cells Tissues Organs, 189, 20 (2008).CrossRefGoogle Scholar
  21. (21).
    T. Liu, W. K. Teng, B. P. Chan, and S. Y. Chew, J. Biomed. Mater. Res. Part A, 95, 276 (2010).CrossRefGoogle Scholar
  22. (22).
    Q. Jiang, N. Reddy, S. Zhang, N. Roscioli, and Y. Yang, J. Biomed. Mater. Res. Part A, 101, 1237 (2013).CrossRefGoogle Scholar
  23. (23).
    K. Sisson, C. Zhang, M. C. Farach-Carson, D. B. Chase, and J. F. Rabolt, Biomacromolecules, 10, 1675 (2009).CrossRefGoogle Scholar
  24. (24).
    T. Kokubo and H. Takadama, Biomaterials, 27, 2907 (2006).CrossRefGoogle Scholar
  25. (25).
    A. C. Tas and S. B. Bhaduri, J. Mater. Res., 19, 2742 (2004).CrossRefGoogle Scholar
  26. (26).
    Q. Cai, Q. Xu, Q. Feng, X. Cao, X. Yang, and X. Deng, Appl. Surf. Sci., 257, 10109 (2011).CrossRefGoogle Scholar
  27. (27).
    T. Andric, L. D. Wright, and J. W. Freeman, J. Biomater. Sci., Polym. Ed., 22, 1535 (2011).CrossRefGoogle Scholar
  28. (28).
    F. Yang, J. Wolke, and J. Jansen, Chem. Eng. J., 137, 154 (2008).CrossRefGoogle Scholar
  29. (29).
    D. Wang, J. Ye, S. D. Hudson, K. C. Scott, and S. Lin-Gibson, J. Colloid Interface Sci., 417, 244 (2014).CrossRefGoogle Scholar
  30. (30).
    A. Veis and J. R. Dorvee, Calcif. Tissue Int., 93, 307 (2013).CrossRefGoogle Scholar
  31. (31).
    K. A. Staines, V. E. MacRae, and C. Farquharson, J. Endocrinol., 214, 241 (2012).CrossRefGoogle Scholar
  32. (32).
    G. K. Hunter, J. O’Young, B. Grohe, M. Karttunen, and H. A. Goldberg, Langmuir, 26, 18639 (2010).CrossRefGoogle Scholar
  33. (33).
    K. Alvares, Connect. Tissue Res., 55, 34 (2014).CrossRefGoogle Scholar
  34. (34).
    H. Samaraweera, W. G. Zhang, E. J. Lee, and D. U. Ahn, J. Food Sci., 76, R143 (2011).CrossRefGoogle Scholar
  35. (35).
    R. Huopalahti, R. López-Fandiño, M. Anton, and R. Schade, Eds., Bioactive Egg Compounds, Springer, Heidelberg, 2007.CrossRefGoogle Scholar
  36. (36).
    M. J. Glimcher, Anat. Rec., 224, 139 (1989).CrossRefGoogle Scholar
  37. (37).
    S. Ito, F. Motai, I. Mizoguchi, and T. Saito, J. Biomed. Mater. Res. Part A, 100, 2760 (2012).CrossRefGoogle Scholar
  38. (38).
    N. Kobayashi, K. Onuma, A. Oyane, and A. Yamazaki, Key Eng. Mater., 254, 537 (2004).CrossRefGoogle Scholar
  39. (39).
    K. Onuma, J. Phys. Chem. B, 109, 8257 (2005).CrossRefGoogle Scholar
  40. (40).
    T. Saito, A. Arsenault, M. Yamauchi, Y. Kuboki, and M. Crenshaw, Bone, 21, 305 (1997).CrossRefGoogle Scholar
  41. (41).
    J. Fan, Y. Zhang, N. Ji, X. Duan, H. Liu, J. Wang, and H. Jiang, Cryst. Eng. Commun., 17, 5372 (2015).CrossRefGoogle Scholar
  42. (42).
    S. Grohmann, H. Rothe, S. Eisenhuth, C. Hoffmann, and K. Liefeith, Biointerphases, 6, 54 (2011).CrossRefGoogle Scholar
  43. (43).
    K. Abdelkebir, S. Morin-Grognet, F. Gaudière, G. Coquerel, B. Labat, H. Atmani, and G. Ladam, Acta Biomater., 8, 3419 (2012).CrossRefGoogle Scholar
  44. (44).
    K. Abdelkebir, F. Gaudiere, S. Morin-Grognet, G. Coquerel, H. Atmani, B. Labat, and G. Ladam, Langmuir, 27, 14370 (2011).CrossRefGoogle Scholar
  45. (45).
    X. Zhang, F. Geng, X. Huang, and M. Ma, J. Cryst. Growth, 409, 44 (2015).CrossRefGoogle Scholar
  46. (46).
    C. Li, F. Geng, X. Huang, M. Ma, and X. Zhang, Poult. Sci., 93, 3065 (2014).CrossRefGoogle Scholar
  47. (47).
    J. Liu, D. Czernick, S.-C. Lin, A. Alasmari, D. Serge, and E. Salih, Dev. Biol., 381, 256 (2013).CrossRefGoogle Scholar
  48. (48).
    T. Naoya, T. Kenichi, M. Ryo, I. Yumiko, H. Yuji, S. Tatsuya, and H. Yusuke, J. Artif. Organs, 19, 141 (2016).CrossRefGoogle Scholar
  49. (49).
    S. M. Full, C. Delman, J. Gluck, R. Abdmaulen, R. Shemin, and S. Heydarkhan-Hagvall, J. Biomed. Mater. Res. Part B: Appl. Biomater., 103, 39 (2015).CrossRefGoogle Scholar
  50. (50).
    X. Zhang, C. L. Kyle, and H. A. Goldberg, J. Sep. Sci., 34, 3295 (2011).CrossRefGoogle Scholar
  51. (51).
    C. Carlisle, C. Coulais, and M. Guthold, Acta Biomater., 6, 2997 (2010).CrossRefGoogle Scholar
  52. (52).
    S. Liao, V. S. Jaswal, G. Kaur, T. W. Simpson, P. K. Banipal, T. S. Banipal, F. Possmayer, and N. O. Petersen, J. Mech. Behav. Biomed. Mater., 1, 252 (2008).CrossRefGoogle Scholar
  53. (53).
    Y. Li, Y. Leng, X. Lu, and F. Ren, Biomacromolecules, 13, 49 (2011).CrossRefGoogle Scholar
  54. (54).
    L. J. Zhang, X. Chu, L. Li, X. Xu, and R. Tang, Mater. Lett., 58, 719 (2004).CrossRefGoogle Scholar
  55. (55).
    M. Zhang, W. Liu, and G. Li, Food Chem., 115, 826 (2009).CrossRefGoogle Scholar
  56. (56).
    R. Usha, K. J. Sreeram, and A. Rajaram, Colloids Surf. B Biointerfaces, 90, 83 (2012).CrossRefGoogle Scholar
  57. (57).
    Q. Cai, Feng, H. Liu, and X. Yang, Mater. Lett., 91, 275 (2013).CrossRefGoogle Scholar
  58. (58).
    Y. Kim and M. Choi, Mater. Technol., 28, 324 (2013).CrossRefGoogle Scholar
  59. (59).
    C. Silva, A. Pinheiro, M. Miranda, J. Góes, and A. Sombra, Solid State Sci., 5, 553 (2003).CrossRefGoogle Scholar
  60. (60).
    H. W. Huh, L. Zhao, and S. Y. Kim, Carbohydr. Polym., 126, 130 (2015).CrossRefGoogle Scholar
  61. (61).
    R. Z. LeGeros, Monogr. Oral Sci., 15, 1 (1990).Google Scholar
  62. (62).
    S. A. Hutchens, R. S. Benson, B. R. Evans, H. M. O’Neill, and C. J. Rawn, Biomaterials, 27, 4661 (2006).CrossRefGoogle Scholar
  63. (63).
    J. Xie, S. Zhong, B. Ma, F. D. Shuler, and C. T. Lim, Acta Biomater., 9, 5698 (2013).CrossRefGoogle Scholar
  64. (64).
    L. B. Gower, Chem. Rev., 108, 4551 (2008).CrossRefGoogle Scholar
  65. (65).
    F. Nudelman, P. H. Bomans, A. George, and N. A. Sommerdijk, Faraday Discuss., 159, 357 (2012).CrossRefGoogle Scholar
  66. (66).
    B. Prescott, V. Renugopalakrishnan, M. Glimcher, A. Bhushan, and G. Thomas Jr., Biochemistry, 25, 2792 (1986).CrossRefGoogle Scholar
  67. (67).
    N. L. Huq, K. J. Cross, M. Ung, and E. C. Reynolds, Arch. Oral Biol., 50, 599 (2005).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Yilin Jie
    • 1
  • Zhaoxia Cai
    • 1
  • Shanshan Li
    • 1
  • Zhuqing Xie
    • 1
  • Meihu Ma
    • 1
  • Xi Huang
    • 1
  1. 1.Egg Processing Technology Local Joint National Engineering Research Center, National R&D Center for Egg Processing, College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanP. R. China

Personalised recommendations