Skip to main content
Log in

Novel chemi-dynamic nanoparticles as a light-free photodynamic therapeutic system for cancer treatment

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a treatment modality, in which photosensitizers are activated by light of appropriate wavelength to convert molecular oxygen from triplet state (3O2) to singlet (1O2) that kills nearby cancer cells. However, the clinical application of PDT is limited to treat tumors on or just below the skin or the lining of internal organs because the light needed cannot pass through more than 1 cm of tissues. Here, we report chemi-dynamic nanoparticles (CDNP) as a light-free photodynamic therapeutic system based on peroxalate chemiluminescence. Photosensitizers are excited by the energy generated from hydrogen peroxide-mediated degradation of peroxalate to generate singlet oxygen to kill cancer cells. CDNP kill cancer cells without external light and hold potential as new anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Siegel, J. Ma, Z. Zou, and A. Jemal, CA Cancer J. Clin., 64, 9 (2014).

    Article  Google Scholar 

  2. A. B. Mariotto, K. R. Yabroff, Y. Shao, E. J. Feuer, and M. L. Brown, J. National Cancer Institute, 103, 117 (2011).

    Article  Google Scholar 

  3. I. Diamond, A. McDonagh, C. Wilson, S. Granelli, S. Nielsen, and R. Jaenicke, Lancet, 300, 1175.

  4. E. E. Kelley, F. E. Domann, G. R. Buettner, L. W. Oberley, and C. P. Burns, J. Photochem. Photobiol. B: Biol., 40, 273 (1997).

    Article  CAS  Google Scholar 

  5. Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, Technol. Cancer Res. Treatment, 7, 309 (2008).

    Article  CAS  Google Scholar 

  6. M. Alexiades-Armenakas, Clinics Dermatol., 24, 16 (2006).

    Article  Google Scholar 

  7. R. Aquaron, O. Forzano, J.L. Murati, G. Fayet, C. Aquaron, and B. Ridings, Cell. Mol. Biol. (Noisy-le-Grand, France), 48, 925 (2002).

    CAS  Google Scholar 

  8. M. B. Vrouenraets, G. W. M. Visser, G. B. Snow, and G. van Dongen, Anticancer Res., 23, 505 (2003).

    CAS  Google Scholar 

  9. A. L. Rose and T. D. Waite, Anal. Chem., 73, 5909 (2001).

    Article  CAS  Google Scholar 

  10. L. P. da Silva and J. da Silva, Chemphyschem, 13, 2257 (2012).

    Article  Google Scholar 

  11. C. M. Magalhaes, J. da Silva, and L. P. da Silva, Chemphyschem, 17, 2286 (2016).

    Article  CAS  Google Scholar 

  12. R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, British J. Cancer, 95, 189 (2006).

    Article  CAS  Google Scholar 

  13. T. Theodossiou, J. S. Hothersall, E. A. Woods, K. Okkenhaug, J. Jacobson, and A. J. MacRobert, Cancer Res., 63, 1818 (2003).

    CAS  Google Scholar 

  14. D. Lee, S. Khaja, J. C. Velasquez-Castano, M. Dasari, C. Sun, J. Petros, W. R. Taylor, and N. Murthy, Nat. Mater., 6, 765 (2007).

    Article  CAS  Google Scholar 

  15. V. Nogueira and N. Hay, Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19, 4309 (2013).

    Article  CAS  Google Scholar 

  16. L. T. Lin, C. J. Tai, S. P. Chang, J. L. Chen, S. J. Wu, and C. C. Lin, Anticancer Agents Med. Chem., 13, 1565 (2013).

    Article  CAS  Google Scholar 

  17. H. Ka, H.-J. Park, H.-J. Jung, J.-W. Choi, K.-S. Cho, J. Ha, and K.-T. Lee, Cancer Lett., 196, 143 (2003).

    Article  CAS  Google Scholar 

  18. Y. H. Seo, A. Singh, H.-J. Cho, Y. Kim, J. Heo, C.-K. Lim, S. Y. Park, W.-D. Jang, and S. Kim, Biomaterials, 84, 111 (2016).

    Article  CAS  Google Scholar 

  19. B. Kim, E. Lee, Y. Kim, S. Park, G. Khang, and D. Lee, Adv. Funct. Mater., 23, 5091 (2013).

    Article  CAS  Google Scholar 

  20. S. Park, J. Yoon, S. Bae, M. Park, C. Kang, Q. Ke, D. Lee, and P. M. Kang, Biomaterials, 35, 5944 (2014).

    Article  CAS  Google Scholar 

  21. D. Yoo, K. Guk, H. Kim, G. Khang, D. Wu, and D. Lee, Int. J. Pharm., 450, 87 (2013).

    Article  CAS  Google Scholar 

  22. D. Lee, S. Bae, Q. Ke, J. Lee, B. Song, S.A. Karumanchi, G. Khang, H. S. Choi, and P. M. Kang, J. Control. Release, 172, 1102 (2013).

  23. Z. Liu, D. Liu, L. Wang, J. Zhang, and N. Zhang, Int. J. Mol. Sci., 12, 1684 (2011).

    Article  CAS  Google Scholar 

  24. Y.-T. Yang, C.-T. Chen, J.-C. Yang, and T. Tsai, AAPS J., 12, 138 (2010).

    Article  CAS  Google Scholar 

  25. A. Gomes, E. Fernandes, and J. L. F. C. Lima, J. Biochem. Biophys. Methods, 65, 45 (2005).

    Article  CAS  Google Scholar 

  26. V. Rapozzi, S. Zorzet, M. Zacchigna, E. Della Pietra, S. Cogoi, and L. E. Xodo, Mol. Cancer, 13, 75 (2014).

    Article  Google Scholar 

  27. S.-N. Jung, D.-S. Shin, H.-N. Kim, Y. J. Jeon, J. Yun, Y.-J. Lee, J. S. Kang, D. C. Han, and B.-M. Kwon, Biochem. Pharmacol., 97, 38 (2015).

    Article  CAS  Google Scholar 

  28. J. Noh, B. Kwon, E. Han, M. Park, W. Yang, W. Cho, W. Yoo, G. Khang, and D. Lee, Nat. Commun., 6, 6907 (2015).

    Article  CAS  Google Scholar 

  29. D. J. Taatjes, B. E. Sobel, and R. C. Budd, Histochem. Cell Biol., 129, 33 (2008).

    Article  CAS  Google Scholar 

  30. C. D. Bortner and J. A. Cidlowski, J. Biol. Chem., 278, 39176 (2003).

    Article  CAS  Google Scholar 

  31. S. G. Bown, A. Z. Rogowska, D. E. Whitelaw, W. R. Lees, L. B. Lovat, P. Ripley, L. Jones, P. Wyld, A. Gillams, and A. W. Hatfield, Gut, 50, 549 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongwon Lee.

Additional information

Acknowledgments: This work was supported by a grant of Korean Health Technology R&D Project (HI15C1619), Ministry of Health & Welfare and Basic Science Research Program (2016R1A2B4008489) through National Research Foundation funded by the Ministry of Education, Republic of Korea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berwin Singh, S.V., Kim, J., Park, H. et al. Novel chemi-dynamic nanoparticles as a light-free photodynamic therapeutic system for cancer treatment. Macromol. Res. 25, 749–755 (2017). https://doi.org/10.1007/s13233-017-5078-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5078-9

Keywords

Navigation