Skip to main content
Log in

Flexible polymer opal films prepared by slide coating from alcoholic media

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the fabrication of a colloidal photonic crystal film on flexible substrate, which can be used as a scaffold material for various photonic applications. A thin polyethylene terephthalate (PET) film was treated by oxygen plasma and then used as a flexible substrate. The surface characterizations revealed that the surface roughness increased, and that the treated PET film was rendered hydrophilic. The contact angles of the films with water/isopropyl alcohol (IPA) mixtures at five different weight ratios (25%, 40%, 50%, 60%, and 75% of IPA) prepared on both treated and non-treated PET films were measured. The results indicated that water/IPA wets on oxygen plasma-treated PET film. The colloidal dispersions were prepared in five different water/IPA mixtures, and slide coating was carried out on both PET films aided by hot air to promote opal formation. Serious dewetting of opal film was observed on the non-treated PET film, except that with a 75% IPA. However, the treated PET film enabled the formation of high-quality opal film, regardless of IPA content in colloidal dispersion. The optical properties and surface morphologies of opal films on flexible PET film were confirmed by reflectance spectra and scanning electron microscopy images of the respective films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, Opt. Commun., 162, 241 (1999).

    Article  CAS  Google Scholar 

  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, Science, 284, 1819 (1999).

    Article  CAS  Google Scholar 

  3. K. Lee and S. A. Asher, J. Am. Chem. Soc., 122, 9534 (2000).

    Article  CAS  Google Scholar 

  4. Y. J. Lee and P. V. Braun, Adv. Mater., 15, 563 (2003).

    Article  CAS  Google Scholar 

  5. W. Lee, A. Chan, M. A. Bevan, J. A. Lewis, and P. V. Braun, Langmuir, 20, 5262 (2004).

    Article  CAS  Google Scholar 

  6. J. Lee, J. Y., Y. D. Kim, J. W. Choi, and J. Park, Macromol. Res., 22, 606 (2014).

    Article  CAS  Google Scholar 

  7. S. J. Lee, S. H. Im, and K. J. Chae, Macromol. Res., 22, 357 (2014).

    Article  CAS  Google Scholar 

  8. S. Lee, Y. Lee, B. Kim, K. Kwon, J. Park, K. Han, H. Lee, and W. Lee, Sens. Actuators B, 231, 256 (2016).

    Article  CAS  Google Scholar 

  9. B. Griesebock, M. Egen, and R. Zentel, Chem. Mater., 14, 4023 (2002).

    Article  CAS  Google Scholar 

  10. M. H. Kim, S. H. Im, and O. O. Park, Adv. Funct. Mater., 15, 1329 (2005).

    Article  CAS  Google Scholar 

  11. J. H. Zhang, Z. Q. Sun, and B. Yang, Curr. Opin. Colloid Interface Sci., 14, 103 (2009).

    Article  Google Scholar 

  12. S. H. Im, M. H. Kim, and O. O. Park, Chem. Mater., 15, 1797 (2003).

    Article  CAS  Google Scholar 

  13. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature, 414, 289 (2001).

    Article  CAS  Google Scholar 

  14. A. Mihi, M. Ocana, and H. Miguez, Adv. Mater., 18, 2244 (2006).

    Article  CAS  Google Scholar 

  15. Y. N. Jiang, H. Li, X. S. Meng, D. F. Zhao, Y. Y. Wang, Q. Liu, J. Zheng, J. H. Zhang, Q. Lin, and B. Yang, J. Rare Earths, 26, 932 (2008).

    Article  Google Scholar 

  16. H. L. Li, W. T. Dong, H. J. Bongard, and F. Marlow, J. Phys. Chem. B, 109, 9939 (2005).

    Article  CAS  Google Scholar 

  17. S. C. Gil, Y. G. Seo, S. Kim, J. Shin, and W. Lee, Thin Solid Films, 518, 5731 (2010).

    Article  CAS  Google Scholar 

  18. S. Kim, Y. G. Seo, Y. Cho, J. Shin, S. C. Gil, and W. Lee, Bull. Korean Chem. Soc., 31, 1891 (2010).

    Article  CAS  Google Scholar 

  19. L. Q. Yang, J. R. Chen, Y. F. Guo, and Z. Zhang, Appl. Surf. Sci., 255, 4446 (2009).

    Article  CAS  Google Scholar 

  20. W. Lee, S. Kim, S. Kim, J. H. Kim, and H. Lee, J. Colloid Interface Sci., 440, 229 (2015).

    Article  CAS  Google Scholar 

  21. A. Kirakosyan, D. Kim, and J. Choi, Macromol. Res., 24, 1030 (2016).

    Article  CAS  Google Scholar 

  22. S. G. Lee and J. Ha, Macromol. Res., 24, 675 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonmok Lee.

Additional information

Acknowledgments: W. Lee acknowledges financial support by the Basic Science Research Program through the National Research Foundation of Korea (NRF) by the Ministry of Science, ICT and Future Planning (No. 2016R1A2B4012313), and partial support by the Technology Innovation Program 273 (Grant No. 10062366) funded By the Ministry of Trade, industry & Energy, Korea. H. L. acknowledges financial support for this work given by the Civil Military Technology Cooperation Center (Grant 15-CM-SS-03).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Koh, Y.G., Lee, H. et al. Flexible polymer opal films prepared by slide coating from alcoholic media. Macromol. Res. 25, 415–419 (2017). https://doi.org/10.1007/s13233-017-5061-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5061-5

Keywords

Navigation