Macromolecular Research

, Volume 25, Issue 5, pp 400–407 | Cite as

Alkylated sulfonated poly(arylene sulfone)s for proton exchange membranes

  • Won Jun Lee
  • Sun Hwa Lee
  • Mustafa K. Bayazit
  • Sang Ouk Kim
  • Yeong Suk Choi
Article
  • 84 Downloads

Abstract

The attachment of flexible spacers into aromatic polymers is a molecular design approach that is used for improving processability of aromatic polymers. The concept is attractive because it enables not only the creation of aromatic polymers with improved processability but it is also possible to control phase morphology by simply introducing pendant side chains. Here we report new bisphenol A derivatives bearing alkyl chains of different lengths obtained by an addition reaction can readily make novel poly(arylene sulfone)s with aromatic dihalides and aromatic dioles. They were observed using two-dimension diffusion-ordered spectroscopy nuclear magnetic resonance (2D DOSY NMR) spectra. Attaching flexible alkyl groups into sulfonated poly(arylene sulfone)s allows for increased control of glass transition temperatures, Tg, of sulfonated poly(arylene sulfone)s. The alkylated sulfonated poly(arylene sulfone)s had flexibility, increased surface contact angle, improved methanol permeability, and high ion conductivity compared to the neat polymer. Due to the creation of aromatic polymers with improved processability by simply introducing pedant side chains, this novel alkylation method is expected to be applicable to other arylene based proton conductive polymers.

Keywords

proton exchange membranes poly arylene sulfone fuel cell alkylation diallylbisphenol A 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    B. C. H. Steele and A. Heinzel, Nature, 414, 345 (2001).CrossRefGoogle Scholar
  2. (2).
    M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000).CrossRefGoogle Scholar
  3. (3).
    K. D. Kreuer, J. Membr. Sci., 185, 29 (2001).CrossRefGoogle Scholar
  4. (4).
    M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev., 104, 4587 (2004).CrossRefGoogle Scholar
  5. (5).
    G. Alberti and M. Casciola, Annu. Rev. Mater. Res., 33, 129 (2003).CrossRefGoogle Scholar
  6. (6).
    A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. van Schalkwijk, Nat. Mater., 4, 366 (2005).CrossRefGoogle Scholar
  7. (7).
    R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-I. Kimijima, and N. Iwashita, Chem. Rev., 107, 3904 (2007).CrossRefGoogle Scholar
  8. (8).
    W. L. Harrison, F. Wang, J. B. Mecham, V. A. Bhanu, M. Hill, Y. S. Kim, and J. E. McGrath, J. Polym. Sci., Part A: Polym. Chem., 41, 2264 (2003).CrossRefGoogle Scholar
  9. (9).
    F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, J. Membr. Sci., 197, 231 (2002).CrossRefGoogle Scholar
  10. (10).
    W. L. Harrison, M. A. Hickner, Y. S. Kim, and J. E. McGrath, Fuel Cells, 5, 201 (2005).CrossRefGoogle Scholar
  11. (11).
    S. Elamathi, G. Nithyakalyani, D. Sangeetha, and S. Ravichandran, Ionics, 14, 377 (2008).CrossRefGoogle Scholar
  12. (12).
    J. Pang, H. Zhang, X. Li, and Z. Jiang, Macromolecules, 40, 9435 (2007).CrossRefGoogle Scholar
  13. (13).
    Y. S. Kim, L. Dong, M. A. Hickner, B. S. Pivovar, and J. E. McGrath, Polymer, 44, 5729 (2003).CrossRefGoogle Scholar
  14. (14).
    Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, Polymer, 47, 4026 (2006).CrossRefGoogle Scholar
  15. (15).
    I. H. Sung, D. M. Yu, Y. J. Yoon, T.-H. Kim, J. Y. Lee, S. K. Hong, and Y. T. Hong, Macromol. Res., 21, 1138 (2013).CrossRefGoogle Scholar
  16. (16).
    H. K. Kim, D. H. Kim, J. Choi, and S. C. Kim, Macromol. Res., 19, 928 (2011).CrossRefGoogle Scholar
  17. (17).
    D. J. Kim, S. M. Woo, and S. Y. Nam, Macromol. Res., 20, 1075 (2012).CrossRefGoogle Scholar
  18. (18).
    J. Miyake, T. Mochizuki, and K. Miyatake, ACS Macro Lett., 4, 750 (2015).CrossRefGoogle Scholar
  19. (19).
    B. Lafitte and P. Jannasch, Adv. Funct. Mater., 17, 2823 (2007).CrossRefGoogle Scholar
  20. (20).
    E. P. Jutemar and P. Jannasch, J. Membr. Sci., 351, 87 (2010).CrossRefGoogle Scholar
  21. (21).
    J. Parvole and P. Jannasch, J. Mater. Chem., 18, 5547 (2008).CrossRefGoogle Scholar
  22. (22).
    P. Jannasch, Fuel Cells, 5, 248 (2005).CrossRefGoogle Scholar
  23. (23).
    S. N. Huckin and L. Weiler, J. Am. Chem. Soc., 96, 1082 (1974).CrossRefGoogle Scholar
  24. (24).
    H.-S. Dang, E. A. Weiber, and P. Jannasch, J. Mater. Chem. A, 3, 5280 (2015).CrossRefGoogle Scholar
  25. (25).
    E. W. Dezmelyk and R. S. Reed, Ind. Eng. Chem., 53, 68A (1961).CrossRefGoogle Scholar
  26. (26).
    R. A. Finnegan and H. W. Kutta, J. Org. Chem., 30, 4138 (1965).CrossRefGoogle Scholar
  27. (27).
    J. Wang, S. Li, and S. Zhang, Macromolecules, 43, 3890 (2010).CrossRefGoogle Scholar
  28. (28).
    T. Ko, K. Kim, B.-K. Jung, S.-H. Cha, S.-K. Kim, and J.-C. Lee, Macromolecules, 48, 1104 (2015).CrossRefGoogle Scholar
  29. (29).
    M. Kumar and M. Ulbricht, RSC Adv., 3, 12190 (2013).CrossRefGoogle Scholar
  30. (30).
    F. Zhang, H. Zhang, and C. Qu, J. Mater. Chem., 21, 12744 (2011).CrossRefGoogle Scholar
  31. (31).
    A. H. N. Rao, S. Nam, and T.-H. Kim, J. Mater. Chem. A, 3, 8571 (2015).CrossRefGoogle Scholar
  32. (32).
    D. Guo, A. N. Lai, C. X. Lin, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, ACS Appl. Mater. Interfaces, 8, 25279 (2016).CrossRefGoogle Scholar
  33. (33).
    C. Gouri, C. P. Reghunadhan Nair, and R. Ramaswamy, Polym. Int., 50, 403 (2001).CrossRefGoogle Scholar
  34. (34).
    P. J. Flory, J. Am. Chem. Soc., 59, 241 (1937).CrossRefGoogle Scholar
  35. (35).
    M. Yoshioka and T. Otsu, Macromolecules, 25, 2599 (1992).CrossRefGoogle Scholar
  36. (36).
    Y. S. Choi, T. K. Kim, E. A. Kim, S. H. Joo, C. Pak, Y. H. Lee, H. Chang, and D. Seung, Adv. Mater., 20, 2341 (2008).CrossRefGoogle Scholar
  37. (37).
    S. H. Joo, C. Pak, E. A. Kim, Y. H. Lee, H. Chang, D. Seung, Y. S. Choi, J.-B. Park, and T. K. Kim, J. Power Sources, 180, 63 (2008).CrossRefGoogle Scholar
  38. (38).
    Y. S. Kim, F. Wang, M. Hickner, S. McCartney, Y. T. Hong, W. Harrison, T. A. Zawodzinski, and J. E. McGrath, J. Polym. Sci., Part B: Polym. Phys., 41, 2816 (2003).CrossRefGoogle Scholar
  39. (39).
    G. J. M. Janssen, E. F. Sitters, and A. Pfrang, J. Power Sources, 191, 501 (2009).CrossRefGoogle Scholar
  40. (40).
    N. Ramaswamy, N. Hakim, and S. Mukerjee, Electrochim. Acta, 53, 3279 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Won Jun Lee
    • 1
  • Sun Hwa Lee
    • 1
  • Mustafa K. Bayazit
    • 2
  • Sang Ouk Kim
    • 1
  • Yeong Suk Choi
    • 3
  1. 1.Department of Materials Science and EngineeringKAISTDaejeonKorea
  2. 2.Department of ChemistryImperial College LondonLondonUK
  3. 3.Organic Materials LabSamsung Advanced Institute of TechnologyGyeonggiKorea

Personalised recommendations