Skip to main content
Log in

Thermal stability, adsorption and rheological behaviors of sulfonated polyacrylamide/chromium triacetate/laponite nanocomposite weak gels

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The objective of the present study is to improve the behavior of sulfonated polyacrylamide (SPA) by adding Laponite and/or chromium(III) with a focus on enhanced oil recovery applications. The resultant systems are weak nanocomposite hydrogels which are subjected to rheological, thermal stability and adsorption tests. The interactions between ingredients of the hydrogel are investigated by Fourier transform infrared (FTIR) spectroscopy. In addition, dispersion of Laponite nanoparticles in hydrogel is confirmed by transmission electron microscopy (TEM). The thermal stability is determined by measuring the loss of viscosity after an aging cycle. The adsorption tests are performed on calcite and evaluated using thermo gravimetric analysis. FTIR spectra confirmed the interaction of Laponite and Cr3+ with SPA. TEM micrograph showed an approximately uniform dispersion of Laponite in the crosslinked SPA/Cr3+/Laponite system. The viscoelastic behaviors of the systems improved with the addition of either Laponite or chromium(III). The sulfonated polyacrylamide/chromium(III)/Laponite system slightly loses its viscosifying power when subjected to harsh conditions of themo-chemical aging process. The adsorption behavior of the systems improved with Laponite concentration while the presence of chromium(III) weakened the adsorption. Therefore the introduced polymeric systems of the present study may be a potential option for enhanced oil recovery applications in hostile conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sabhapondit, A. Borthakur, and I. Haque, Energy Fuels, 17, 683 (2003).

    Article  CAS  Google Scholar 

  2. W. Wang, Y. Liu, and Y. Gu, Colloid Polym. Sci., 281, 1046 (2003).

    Article  CAS  Google Scholar 

  3. J. S. Ward and F. David Martin, Paper SPE 8978, SPE 5th International Symposium on Oilfield and Geothermal Chemistry, Stanford, May 28-30, 1980.

    Google Scholar 

  4. A. Moradi-Araghi, D. H. Cleveland, W. W. Jones, and I. J. Westermam, Paper SPE 16273, SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, Feb. 4-6, 1987.

    Google Scholar 

  5. M. Rashidi, A. M. Blokhus, and A. Skauge, J. Appl. Polym. Sci., 117, 1551 (2010).

    CAS  Google Scholar 

  6. S. Shin and Y. Cho, KSME International J., 12, 267 (1998).

    Article  Google Scholar 

  7. R. S. Seright, Paper SPE 9297, SPE Annual Technical Conference and Exhibition, Dallas, Sep. 21-24, 1980.

    Google Scholar 

  8. J. Fu, R. Qiao, L. Zhu, W. Zhu, and S. Hao, Korean J. Chem. Eng., 30, 82 (2013).

    Article  CAS  Google Scholar 

  9. Q. Chen, Y. Wang, Z. Lu, and Y. Feng, Polym. Bull., 70, 391 (2013).

    Article  CAS  Google Scholar 

  10. G. Wang, J. Ouyang, and X. Yi, Chem. Technol. Fuels Oils, 47, 263 (2011).

    Article  Google Scholar 

  11. H. J. R. Pledger, J. J. Meister, T. E. Hogen-Esch, and G. B. Butler, Paper SPE 8422, The 54th Annual Fall Technical Conference and Exibition of the Society of Petroleum Engineers of AIME, Las vegas Antonio, Texas, Nevada, Sep. 23-26, 1979.

    Google Scholar 

  12. P. Zhang, Y. Wang, W. Chen, H. Yu, Z. Qi, and K. Li, J. Solution Chem., 40, 447 (2011).

    Article  CAS  Google Scholar 

  13. C. Zhong, P. Luo, Z. Ye, and H. Chen, Polym. Bull., 62, 79 (2009).

    Article  CAS  Google Scholar 

  14. J. Chen, M. Liu, H. Liu, L. Ma, C. Gao, S. Zhu, and S. Zhang, Chem. Eng. J., 159, 247 (2010).

    Article  CAS  Google Scholar 

  15. J. Aalaie, A. Rahmatpour and E. Vasheghani-Farahani, Poly. Adv. Technol., 20, 1102 (2009).

    Article  CAS  Google Scholar 

  16. J. Aalaie, E. Vasheghani-Farahani, A. Rahmatpour, and M. A. Semsarzadeh, J. Macromol. Sci. Part B: Phys., 52, 604 (2013).

    Article  CAS  Google Scholar 

  17. P. Shen, D. Han, L. Wei, and S. Yuan, Paper SPE 64729, SPE International Oil and Gas Conference and Exhibition, Beijing, Nov. 7-10, 2000.

    Google Scholar 

  18. J. Aalaie and M. Youssefi, J. Macromol. Sci. Part B: Phys., 51, 1027 (2012).

    Article  CAS  Google Scholar 

  19. J. Aalaie, J. Macromol. Sci. Part B: Phys., 51, 1139 (2012).

    Article  CAS  Google Scholar 

  20. E. Alvand, J. Aalaie, M. Hemmati, and V. A. Sajjadian, Korean J. Chem. Eng., 33, 1954 (2016).

    Article  CAS  Google Scholar 

  21. O. Okay and W. Oppermann, Macromolecules, 40, 3378 (2007).

    Article  CAS  Google Scholar 

  22. K. Haraguchi, R. Farnworth, A. Ohbayashi, and T. Takehisa, Macromolecules, 36, 5732 (2003).

    Article  CAS  Google Scholar 

  23. K. Nijenhuis, A. Mensert, and P. L. J. Zitha, Rheol. Acta, 42, 132 (2003).

    Article  Google Scholar 

  24. S. Kakadjian, O. Rauseo, and F. Mejias, Paper SPE 50751, International Symposium on Oilfield Chemistry, Houston, TX, Feb. 16-19, 1999.

    Google Scholar 

  25. D. Broseta, O. Marquer, N. Blin, and N. Zaitoun, Paper SPE 59319, Improved Oil Recovery Symposium, Tulsa, Oklahoma, Apr. 3-5, 2000.

    Google Scholar 

  26. K. Nijenhuis, Macromol. Symp., 171, 189 (2001).

    Article  Google Scholar 

  27. J. Aalaie, E. Alvand, M. Hemmati, and V. A. Sajjadian, Polym. Sci. Ser. A, 57, 680 (2015).

    Article  CAS  Google Scholar 

  28. N. Chen and J. Zhang, Chin. J. Polym. Sci., 28, 903 (2010).

    Article  CAS  Google Scholar 

  29. T. P. Lockhart, Paper SPE 20998, SPE International Symposium on Oilfield Chemistry, Anaheim, CA, Feb. 20-22, 1991.

    Google Scholar 

  30. P. Li, N. H. Kim, S. B. Heo, and J. H. Lee, Compos. Part B, 39, 756 (2008).

    Article  Google Scholar 

  31. S. F. Hassan, M. Han, X. Zhou, D. Krinis, B. Zahrani, Paper SPE 168069, SPE Annual Technical Symposium and Exhibition, Khobar, Saudi Arabia, May 19-22, 2013.

    Google Scholar 

  32. G. A. Stahl and D. N. Schulz, in Water-Soluble Polymers for Petroleum Recovery, Plenum Press, New York, 1988, pp 299–312.

    Book  Google Scholar 

  33. K. Haraguchi, H. Li, K. Matsuda, T. Takehisa, and E. Elliott, Macromolecules, 38, 3482 (2005).

    Article  CAS  Google Scholar 

  34. J. Liu and R. S. Seright, Paper SPE 70810, Improved Oil Recovery Symposium, Tulsa, Oklahoma, Apr. 3-5, 2000.

    Google Scholar 

  35. R. K. Prud'homme, J. T. Uhl, J. P. Poinsatte, and F. Halverson, Paper SPE 10948, The Society of Petroleum Engineers of AIME, SPEJ, Soc. Pet. Eng. J., 23, 804 (1983).

    Article  Google Scholar 

  36. M. Han, L. Shi, M. Ye, and Q. Guo, Polym. Bull., 36, 483 (1996).

    Article  Google Scholar 

  37. C. A. Grattoni, H. H. Al-Sharji, C. Yang, A. H. Muggeridge, and W. Zimmerman, J. Colloid Interface Sci., 240, 601 (2001).

    Article  CAS  Google Scholar 

  38. K. C. Tam, L. Guo, R. D. Jenkins, and D. R. Bassett, Polymer, 40, 6369 (1999).

    Article  CAS  Google Scholar 

  39. S. Abdurrahmanoglu, V. Can, and O. Okay, J. Appl. Polym. Sci., 109, 3714 (2008).

    Article  CAS  Google Scholar 

  40. L. Xiangguo, L. Jinxiang, W. Rongjian, W. Yigang, and Z. Song, Pet. Sci., 75 (2012).

  41. S. Abdurrahmanoglu and O. Okay, J. Appl. Polym. Sci., 116, 2328 (2010).

    CAS  Google Scholar 

  42. I. Ahmad and A. Moradi-Araghi, Trends Polym. Sci., 2, 92 (1994).

    Google Scholar 

  43. Y. Wu, A. Mahmoudkhani, P. Watson, T. Fenderson, and M. Nair, Paper SPE 155653, SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, Apr. 16-18, 2012.

    Google Scholar 

  44. A. Moradi-Araghi, J. Pet. Sci. Eng., 26, 1 (2000).

    Article  CAS  Google Scholar 

  45. A. H. Kabir, Paper SPE 72119, SPE Asia Pacific Improved Oil Recovery, Kuala Lumpur, Oct. 8-9, 2001.

    Google Scholar 

  46. R. F. Mezzomo, P. Moczydlower, A. N. Sanmartin, C. H. V. Araujo, and S. A. Petrobras, Paper SPE-75204, SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, Apr. 13-17, 2002.

    Google Scholar 

  47. P. Somasundaran and G. B. Grieves, Advances in Interfacial Phenomena of Particulate/Solution/Gas System: Application to Floatation Research, AIChE, New York, 1975.

    Google Scholar 

  48. W. Stumm and J. J. Morgan, Aquatic Chemistry, Wiley, New York, 1970.

    Google Scholar 

  49. L. Chiappa, A. Mennella, and G. Burrafato, Paper SPE 39619, The SPE/COE Improved Oil Recovery Symposium, Tulsa, Oklahoma, Apr. 19-22, 1996.

    Google Scholar 

  50. F. Lippmann, Sedimentary Carbonate Minerals, Springer Verlag, New York, 1973.

    Book  Google Scholar 

  51. C. Huang, M. Fowkes, B. Lloyd, and D. Sanders, Langmuir, 7, 1742 (1991).

    Article  CAS  Google Scholar 

  52. R. Nystrom, M. Lindén, and B. Rosenholm, J. Colloid Interface Sci., 242, 259 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aalaie Jamal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsan, A., Jamal, A., Mahmood, H. et al. Thermal stability, adsorption and rheological behaviors of sulfonated polyacrylamide/chromium triacetate/laponite nanocomposite weak gels. Macromol. Res. 25, 27–37 (2017). https://doi.org/10.1007/s13233-017-5005-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5005-0

Keywords

Navigation