Macromolecular Research

, Volume 24, Issue 11, pp 1014–1019 | Cite as

The high-resolution nanostructuring of Si wafer surface with 10 nm scale using a combined ion bombarding technique and chemical reaction



We describe a highly efficient technique for nanostructuring silicon (Si) wafer surfaces with high-resolution (< 15 nm) and high aspect ratio (20) structures without any deposition processes. Our strategy is based on advanced secondary sputtering lithography (SSL), which combines physical and chemical plasma etching during an ion bombardment process. Compared with general SSL techniques using Ar gas only, the reactive radicals assisted the SSL and promoted the Si etching rate to simultaneously deposit the etched Si materials onto the side surface of a pre-patterned polymer. In addition, various three-dimensional Si nanostructure shapes could be developed simply by controlling the pre-patterned polymer, thereby providing a simple and versatile approach to customizing this technique.


silicon nano-structure high resolution secondary sputtering lithography plasma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2016_4136_MOESM1_ESM.pdf (757 kb)
Supporting Information


  1. (1).
    H. Yan, Z. Chen, Y. Zheng, C. Newmann, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchettl, Nature, 357, 679 (2009).CrossRefGoogle Scholar
  2. (2).
    H.-J. Jeon, H. S. Jeong, Y. H. Kim, W.-B. Jung, J. Y. Kim, and H.-T. Jung, ACS Nano, 8, 1204 (2014).CrossRefGoogle Scholar
  3. (3).
    S.-Y. Cho, H.-W. Yoo, J. Y. Kim, W.-B. Jung, M. L. Jin, J.-S. Kim, H.-J. Jeon, and H.-T. Jung, Adv. Mater., 16, 4508 (2016).Google Scholar
  4. (4).
    M.-G. Kang, M.-S. Kim, and L. J. Guo, Adv. Mater., 20, 4408 (2008).CrossRefGoogle Scholar
  5. (5).
    R. Ogier, L. Shao, M. Svedendahl, and M. Kall, Adv. Mater., 28, 4658 (2016).CrossRefGoogle Scholar
  6. (6).
    D. C. Watson, R. V. Martinez, Y. Fontana, E. Russo-Averchi, M. Heiss, A. F. Morral, G. M. Whitesides, and M. Loncar, Nano Lett., 14, 1152 (2014).Google Scholar
  7. (7).
    A. J. M. Mackus, A. A. Bol, and W. M. M. Keseels, Nanoscale, 6, 10941 (2014).CrossRefGoogle Scholar
  8. (8).
    C. Frankiewicz and D. Attinger, Nanoscale, 8, 3982 (2016).CrossRefGoogle Scholar
  9. (9).
    J. W. Hwang, B. R. Lee, M. J. Jung, H. S. Jung, Y. H. Hwang, M. J. Kim, S. H. Lee, and D. Y. Lee, Macromol. Res., 19, 1320 (2011).CrossRefGoogle Scholar
  10. (10).
    B. J. Cha, J. M. Yang, and W. Hwang, Macromol. Res., 14, 579 (2006).CrossRefGoogle Scholar
  11. (11).
    P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, and M. Zhong, Nano Lett., 15, 5988 (2015).CrossRefGoogle Scholar
  12. (12).
    M. Tormen, E. Sovernigo, A. Pozzato, M. Pianigiani, and M. Tormen, Microelectron. Eng., 141, 21 (2015).CrossRefGoogle Scholar
  13. (13).
    M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, ACS Nano, 9, 9331 (2015).CrossRefGoogle Scholar
  14. (14).
    S. M. Lubin, W. Zhou, A. J. Hryn, M. D. Juntington, and T. W. Odom, Nano Lett., 12, 4948 (2012).CrossRefGoogle Scholar
  15. (15).
    S. Y. Lee, G. F. Walsh, and L. D. Negro, Opt. Express, 21, 4945 (2013).CrossRefGoogle Scholar
  16. (16).
    M. A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, and J. A. Rogers, Nano Lett., 4, 1643 (2004).CrossRefGoogle Scholar
  17. (17).
    K. Lee, Y. S. Kim, and K. Shin, Macromol. Res., 20, 762 (2012).CrossRefGoogle Scholar
  18. (18).
    L. Zaraska, M. Jaskula, and G. D. Sulka, Mater. Lett., 171, 315 (2016).CrossRefGoogle Scholar
  19. (19).
    Q. Wang, S. Liu, W. Sheng, N. Guang, and X. Li, Macromol. Res., 23, 607 (2015).CrossRefGoogle Scholar
  20. (20).
    D. J. Kim, H. Y. Hwang, and S. Y. Nam, Macromol. Res., 21, 1194 (2013).CrossRefGoogle Scholar
  21. (21).
    N. Burham, A. A. Hamzah, and B. Y. Majlis, Microelectron. Eng., 141, 160 (2014).CrossRefGoogle Scholar
  22. (22).
    S. L. Cheng, Y. H. Lin, S. W. Lee, T. Lee, H. Chen, J. C. Hu, and L. T. Chen, App. Surf. Sci., 263, 430 (2012).CrossRefGoogle Scholar
  23. (23).
    K. W. Kolasinski, Surf. Sci., 603, 1904 (2009).CrossRefGoogle Scholar
  24. (24).
    Y.-H. Lai, C.-T. Yeh, J.-M. Hwang, H.-L. Hwang, C.-T. Chen and W.-H. Hung, J. Phys. Chem. B, 105, 10029 (2001).CrossRefGoogle Scholar
  25. (25).
    Z. Ren and M. E. McNie, Microelectron. Eng., 141, 261 (2014).CrossRefGoogle Scholar
  26. (26).
    J. C. Park, S. H. Kim, S. U. Cha, G. Jeong, T. G. Kim, J. K. Kim, and H. Cho, J. Nanosci. Nanotechnol., 14, 9078 (2014).CrossRefGoogle Scholar
  27. (27).
    H.-J. Jeon, K. H. Kim, Y.-K. Baek, D. W. Kim, and H.-T. Jung, Nano Lett., 10, 3604 (2010).CrossRefGoogle Scholar
  28. (28).
    S.-Y. Cho, H.-J. Jeon, J.-S. Kim, J. M. Ok, and H.-T. Jung, Adv. Funct. Mater., 24, 6939 (2014).CrossRefGoogle Scholar
  29. (29).
    S.-Y. Cho, H.-J. Jeon, H.-Y. Yoo, K. M. Cho, W.-B. Jung, J.-S. Kim, and H.-T. Jung, Nano Lett., 15, 7273 (2015).CrossRefGoogle Scholar
  30. (30).
    H.-J. Jeon, J. Y. Kim, W.-B., Jeong, H. S. Jeong, Y. H. Kim, D. O. Shin, S. J. Jung, J. Shin, S. O. Kim, and H.-T. Jung, Adv. Mater., doi:10.1002/adma.201602523 (2016).Google Scholar
  31. (31).
    H.-J. Jeon, E. H. Lee, H.-Y. Yoo, K. H. Kim, and H.-T. Jung, Nanoscale, 6, 5953 (2014).CrossRefGoogle Scholar
  32. (32).
    J.-S. Kim, H.-J. Jeon, H.-W. Yoo, Y.-K. Baek, K. H. Kim, D. W. Kim, and H.-T. Jung, Adv. Funct. Mater., 24, 841 (2014).CrossRefGoogle Scholar
  33. (33).
    M.-B. Lin, Introduction to VLSI System: A Logic, Circuit and System Perspective, CRC Press, Boca Raton, 2012, pp 129–185.Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Nano-structured Materials ResearchKorea National Nanofab CenterDaejeonKorea
  2. 2.Institute of Advanced Composite MaterialsKorea Institute of Science and Technology (KIST)Wanju-gun, JeonbukKorea

Personalised recommendations