Macromolecular Research

, Volume 24, Issue 11, pp 1003–1013 | Cite as

Processing and characterization of electrospun nanofibers from poly(lactic acid)/trimethylchitosan blends

  • Daniella Lury Morgado
  • Odilio Benedito Garrido Assis


In this study the production of biodegradable nanofibrous structures of poly(lactic acid) (PLA) blended with the water-soluble salt trimethylchitosan (TMC) was investigated by using the electrospinning process. Different concentrations of PLA (8 and 10% w/v) and TMC (0.5, 1, and 2% w/v) were prepared and spun. The morphology, diameter and structure of PLA/TMC blended nanofibers were characterized by scanning electron microscope (SEM), atomic force microscope (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC) and contact angle measurements. Images obtained from SEM showed that the blended nanofibers display a uniform and smooth morphology without bead formation. The diameters of the fibers were affected by the presence of chitosan derivative, decreasing from 264 to 184 nm when the TMC addition was 20% (w/w). FTIR and XRD results indicate strong intermolecular hydrogen bonds between the molecules of PLA and chitosan derivative, with reduction in the crystallinity, thermal stability and hydrophobicity as TMC content increases in the blend.


electrospinning quaternized chitosan poly(lactic acid) blend characterization nanofibers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. Jayakumar, D. Menon, K. Manzoor, S. V. Nair, and H. Tamura, Carbohydr. Polym., 82, 227 (2010).CrossRefGoogle Scholar
  2. (2).
    M. Radulescu, D. Ficai, O. Oprea, A. Ficai, E. Andronescu, and Alina M. Holban, Curr. Pharm. Biotechnol., 16, 128 (2015).CrossRefGoogle Scholar
  3. (3).
    T. D. Rathke and S. M. Hudson, J. Macromol. Sci., Part C: Polym. Rev., 34, 375 (1994).CrossRefGoogle Scholar
  4. (4).
    X. Zeng and E. Ruckenstein, Ind. Eng. Chem. Res., 35, 4169 (1996).CrossRefGoogle Scholar
  5. (5).
    S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi, J. Control. Release, 100, 5 (2004).CrossRefGoogle Scholar
  6. (6).
    D. L. Nettles, S. H. Elder, and J. A. Gilbert, Tissue Eng., 8, 1009 (2002).CrossRefGoogle Scholar
  7. (7).
    M. Z. Elsabee, H. F. Naguib, and R. E. Morsi, Mater. Sci. Eng. C, 32, 1711 (2012).CrossRefGoogle Scholar
  8. (8).
    W. E. Teo and S. Ramakrishna, Nanotechnology, 17, R89 (2006).CrossRefGoogle Scholar
  9. (9).
    H. Homayoni, S. A. H. Ravandi, and M. Valizadeh, Carbohydr. Polym., 77, 656 (2009).CrossRefGoogle Scholar
  10. (10).
    K. Sun and Z. H. Li, eXPRESS Polym. Lett., 5, 342 (2011).CrossRefGoogle Scholar
  11. (11).
    X. Geng and O.-H. Kwon, J. Jang, Biomaterials, 26, 5427 (2005).CrossRefGoogle Scholar
  12. (12).
    D. Britto and O. B. G. Assis, Carbohydr. Polym., 69, 305 (2007).CrossRefGoogle Scholar
  13. (13).
    B. Duan, L. Wu, X. Yuan, Z. Hu, X. Li, Y. Zhang, K. Yao, and M. Wang, J. Biomed. Mater. Res. A, 83, 868 (2007).CrossRefGoogle Scholar
  14. (14).
    D. Pasqui, M. Cagna, and R. Barbucci, Polymers, 4, 1517 (2012).CrossRefGoogle Scholar
  15. (15).
    J. Xu, J. Zhang, W. Gao, H. Liang, H. Wang, and J. Li, Mater. Lett., 63, 658 (2009).CrossRefGoogle Scholar
  16. (16).
    N. E. Suyatma, A. Copinet, L. Tighzert, and V. Coma, J. Polym. Environ., 12, 1 (2004).CrossRefGoogle Scholar
  17. (17).
    J. Bonilla, E. Fortunati, M. Vargas, A. Chiralt, and J. M. Kenny, J. Food Eng., 119, 236 (2013).CrossRefGoogle Scholar
  18. (18).
    K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol., 101, 8493 (2010).CrossRefGoogle Scholar
  19. (19).
    R. P. Pawar, S. U. Tekale, S. U. Shisodia, J. T. Totre, and A. Domb, Recent Pat. Regen. Med., 4, 40 (2014).Google Scholar
  20. (20).
    D. Britto, F. R. Frederico, and O. B. G. Assis, Polym. Int., 60, 910 (2011).CrossRefGoogle Scholar
  21. (21).
    D. Britto and O. B. G. Assis, Int. J. Biol. Macromol., 41, 198 (2007).CrossRefGoogle Scholar
  22. (22).
    A. M. Hindeleh and D. J. Johnson, Polymer, 19, 27 (1978).CrossRefGoogle Scholar
  23. (23).
    C.-C. Tsai, R.-J. Wu, H.-Y. Cheng, S.-C. Li, Y.-Y. Siao, D.-C. Kong, and G.-W. Jang, Polym. Degrad. Stab., 95, 1292 (2010).CrossRefGoogle Scholar
  24. (24).
    N. M. Siqueira, K. C. Garcia, R. Bussamara, F. S. Both, M. H. Vainstein, and R. M. D. Soares, Int. J. Biol. Macromol., 72, 998 (2015).CrossRefGoogle Scholar
  25. (25).
    S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002).CrossRefGoogle Scholar
  26. (26).
    R. V. N. Krishnappa, K. Desai, and C. Sung, J. Mater. Sci., 38, 2357 (2003).CrossRefGoogle Scholar
  27. (27).
    S.-H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, Polymer. 46, 6128 (2005).CrossRefGoogle Scholar
  28. (28).
    C. Santos, C. J. Silva, Z. Büttel, R. Guimarães, S. B. Pereira, P. Tamagnini, and A. Zille, Carbohydr. Polym., 99, 584 (2014).CrossRefGoogle Scholar
  29. (29).
    G. Stoclet, R. Seguela, J. M. Lefebvre, S. Elkoun, and C. Vanmansart, Macromolecules, 43, 1488 (2010).CrossRefGoogle Scholar
  30. (30).
    H. Zhou, T. B. Green, and Y. L. Joo, Polymer, 47, 7497 (2006).CrossRefGoogle Scholar
  31. (31).
    J. E. Oliveira, E. A. Moraes, J. M. Marconcini, L. H. C. Mattoso, G. M. Glenn, and E. S. Medeiros, J. Appl. Polym. Sci., 129, 3672 (2013).CrossRefGoogle Scholar
  32. (32).
    A. Sonseca, L. Peponi, O. Sahuquillo, J. M. Kenny, and E. Giménez, Polym. Degrad. Stab., 97, 2052 (2012).CrossRefGoogle Scholar
  33. (33).
    M. Fan, Q. Hu, and K. Shen, Carbohydr. Polym., 78, 66 (2009).CrossRefGoogle Scholar
  34. (34).
    J. Kumirska, M. Czerwicka, Z. Kaczynski, A. Bychowska, K. Brzozowski, J. Thöming, and P. Stepnowski, Mar. Drugs, 8, 1567 (2010).CrossRefGoogle Scholar
  35. (35).
    J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihara, and B. Lotz, Polymer, 41, 8921 (2000).CrossRefGoogle Scholar
  36. (36).
    D. Garlotta, J. Polym. Environ., 9, 63 (2001).CrossRefGoogle Scholar
  37. (37).
    R. Inai, M. Kotaki, and S. Ramakrishna, Nanotechnology, 16, 208 (2005).CrossRefGoogle Scholar
  38. (38).
    R. Auras, L. T. Lim, S. E. M. Selke, and H. Tsuji, Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications, Wiley, New Jersey, 2010.CrossRefGoogle Scholar
  39. (39).
    N. Wang, X. Zhang, X. Ma, and J. Fang, Polym. Degrad. Stab., 93, 1044 (2008).CrossRefGoogle Scholar
  40. (40).
    H. T. Oyama, Polymer, 50, 747 (2009).CrossRefGoogle Scholar
  41. (41).
    L. Nikolic, I. Ristic, B. Adnadjevic, V. Nikolic, J. Jovanovic, and M. Stankovic, Sensors, 10, 5063 (2010).CrossRefGoogle Scholar
  42. (42).
    E. S. Costa-Júnior, E. F. Barbosa-Stancioli, A. A. P. Mansur, W. L. Vasconcelos, and H. S. Mansur, Carbohydr. Polym., 76, 472 (2009).CrossRefGoogle Scholar
  43. (43).
    F. Yao, W. Chen, C. Liu, and K. De Yao, J. Appl. Polym. Sci., 89, 3850 (2003).CrossRefGoogle Scholar
  44. (44).
    S. Corneillie and M. Smet, Polym. Chem., 6, 850 (2015).CrossRefGoogle Scholar
  45. (45).
    D. Britto and O. B. G. Assis, Packag. Technol. Sci., 23, 111 (2010).Google Scholar
  46. (46).
    H.-W. Kim, H.-S. Yu, and H.-H. Lee, J. Biomed. Mater. Res. A, 87A, 25 (2007).CrossRefGoogle Scholar
  47. (47).
    T. T. T. Nguyen, O. H. Chung, and J. S. Parka, Carbohydr. Polym., 86, 1799 (2011).CrossRefGoogle Scholar
  48. (48).
    A. Zhu, M. Zhang, J. Wu, and J. Shen, Biomaterials, 23, 4657 (2002).CrossRefGoogle Scholar
  49. (49).
    A. V. Janorkar, A. T. Metters, and D. E. Hirt, Macromolecules, 37, 9151 (2004).CrossRefGoogle Scholar
  50. (50).
    O. E. Philippova and E. V. Korchagina, Polym. Sci. Ser. A, 54, 552 (2012).CrossRefGoogle Scholar
  51. (51).
    K. Okuyama, K. Noguchi, T. Miyazawa, T. Yui, and K. Ogawa, Macromolecules, 30, 5849 (1997).CrossRefGoogle Scholar
  52. (52).
    F. Carrasco, P. Pagès, J. Gámez-Pérez, O. O. Santana, and M. L. Maspoch, Polym. Degrad. Stab., 95, 11 (2010).Google Scholar
  53. (53).
    N. Ljungberg and B. Wesslén, J. Appl. Polym. Sci., 86, 1227 (2002).CrossRefGoogle Scholar
  54. (54).
    T. F. Cipriano, A. L. N, Silva, A. H. M. F. T. Silva, A. M. F. Sousa, G. M. Silva, and M. C. G. Rocha, Polímeros, 24, 276 (2014).CrossRefGoogle Scholar
  55. (55).
    G. Groeninckx, M. Vanneste, and V. Everaert, in Polymer Blends Handbook, L. A. Utracki, Ed., Kluwer Academic Publisher, Netherlands, 2002, Chap. 3, pp 203–294.Google Scholar
  56. (56).
    S. Z. D. Cheng and B. Lotz, Polymer, 6, 8662 (2005).CrossRefGoogle Scholar
  57. (57).
    E. W. Fischer, H. J. Sterzel, and G. Wegner, Colloid Polym. Sci., 251, 980 (1973).Google Scholar
  58. (58).
    S. Sosnowski, Polymer, 42, 637 (2001).CrossRefGoogle Scholar
  59. (59).
    M.-A. Paul, M. Alexandre, P. Degée, C. Henrist, A. Rulmont, and P. Dubois, Polymer, 44, 443 (2003).CrossRefGoogle Scholar
  60. (60).
    M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, and E. Wintermantel, J. Appl. Polym. Sci., 90, 1731 (2003).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2016

Authors and Affiliations

  • Daniella Lury Morgado
    • 1
  • Odilio Benedito Garrido Assis
    • 1
  1. 1.Embrapa InstrumentaçãoSão CarlosBrazil

Personalised recommendations