Skip to main content
Log in

Tunable morphology for silica/poly(acrylic acid) hybrid nanoparticles via facile one-pot synthesis

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Synthesis of the hybrid nanoparticles through simultaneous polymerization of organic monomer and solgel process of the inorganic precursor is a promising subject for creating new materials. Herein, an efficient one-pot synthesis method using the simultaneous sol-gel process with free radical polymerization technique reports the tunable morphology for silica/ poly(acrylic acid) (PAA) hybrid nanoparticles in which tetraethoxysilane (TEOS) and acrylic acid were used as inorganic and organic precursors, respectively. To achieve the best conditions for a simultaneous synthesis, the most important parameters such as pH, TEOS concentration, AA/TEOS ratio, surfactant concentration and temperature were adopted with respect to particle size. It is experimentally demonstrated that the reaction temperature is the most influential parameter affecting the particle size of hybrid nanoparticles. In addition, transmission electron microscopy images revealed that, the tunable morphology of hybrid nanoparticles from the organic-inorganic core-shell to organic and inorganic heterodimer nano(semi)spheres can be achieved by controlling the concentration of TEOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tang, R. Yuan and Y. Chai, Clin. Chem., 53, 1323 (2007).

    Article  CAS  Google Scholar 

  2. D. Knopp, D. Tang, and R. Niessner, Anal. Chim. Acta, 647, 14 (2009).

    Article  CAS  Google Scholar 

  3. S.-W. Ha, J. A. Sikorski, M. N. Weitzmann, and G. R. Beck Jr., Toxicol. In Vitro, 28, 354 (2014).

    Article  CAS  Google Scholar 

  4. A. Rimola, D. Costa, M. Sodupe, J.-F. Lambert, and P. Ugliengo, Chem. Rev., 113, 4216 (2013).

    Article  CAS  Google Scholar 

  5. K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, and K. Makino, J. Colloid Interface Sci., 289, 125 (2005).

    Article  CAS  Google Scholar 

  6. J. Liu, Q. Yang, L. Zhang, H. Yang, J. Gao, and C. Li, Chem. Mater., 20, 4268 (2008).

    CAS  Google Scholar 

  7. H. Zou, S. Wu, and J. Shen, Chem. Rev., 108, 3893 (2008).

    Article  CAS  Google Scholar 

  8. Z. Cao, L. Dong, L. Li, Y. Shang, D. Qi, Q. Lv, G. Shan, U. Ziener, and K. Landfester, Langmuir, 28, 7023 (2012).

    Article  CAS  Google Scholar 

  9. S.-L. Huang, W.-K. Chin, and W. P. Yang, Polymer (Guildf), 46, 1865 (2005).

    Article  CAS  Google Scholar 

  10. Z. Cao, L. Yang, Y. Yan, Y. Shang, Q. Ye, D. Qi, U. Ziener, G. Shan, and K. Landfester, J. Colloid Interface Sci., 406, 139 (2013).

    Article  CAS  Google Scholar 

  11. Y.-Y. Yu and W.-C. Chen, Mater. Chem. Phys., 82, 388 (2003).

    Article  CAS  Google Scholar 

  12. A. Schmid, J. Tonnar, and S. P. Armes, Adv. Mater., 20, 3331 (2008).

    Article  CAS  Google Scholar 

  13. D. Qi, Z. Cao, and U. Ziener, Adv. Colloid Interface Sci., 211, 47 (2014).

    Article  CAS  Google Scholar 

  14. X. Jia, Y. Li, Q. Cheng, S. Zhang, and B. Zhang, Eur. Polym. J., 43, 1123 (2007).

    Article  CAS  Google Scholar 

  15. D. Fragiadakis and P. Pissis, J. Non-Cryst. Solids, 353, 4344 (2007).

    Article  CAS  Google Scholar 

  16. R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T. K. Chaki, and A. K. Bhowmick, Polymer (Guildf), 46, 3343 (2005).

    Article  CAS  Google Scholar 

  17. J. Jang and H. Park, J. Appl. Polym. Sci., 83, 1817 (2002).

    Article  CAS  Google Scholar 

  18. L. Wang, Y. Shen, X. Lai, and Z. Li, J. Appl. Polym. Sci., 119, 3521 (2011).

    Article  CAS  Google Scholar 

  19. C. N. Hsiao and K. S. Huang, J. Appl. Polym. Sci., 96, 1936 (2005).

    Article  CAS  Google Scholar 

  20. L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, Anal. Chem., 78, 646 (2006).

    Article  Google Scholar 

  21. M. Segers and R. Van Zandvoort, Chem. Mater., 19, 5718 (2014).

    Article  Google Scholar 

  22. S. Mura, J. Nicolas, and P. Couvreur, Nat. Mater., 12, 991 (2013).

    Article  CAS  Google Scholar 

  23. S. Santra, P. Zhang, K. Wang, R. Tapec, and W. Tan, Anal. Chem., 73, 4988 (2001).

    Article  CAS  Google Scholar 

  24. T. Von Werne and T. Patten, J. Am. Chem. Soc., 121, 7409 (1999).

    Article  Google Scholar 

  25. C. Fang, Z. Xiong, H. Qin, G. Huang, J. Liu, M. Ye, S. Feng and H. Zou, Anal. Chim. Acta, 841, 99 (2014).

    Article  CAS  Google Scholar 

  26. C. Zhang, L. Ai, L. Li, and J. Jiang, J. Alloys Compd., 582, 576 (2014).

    Article  CAS  Google Scholar 

  27. A. Muramatsu and T. Miyashita, Nanohybridization of Organic-Inorganic Materials, Springer, Berlin Heidelberg, 2009.

    Book  Google Scholar 

  28. Z. Chen, L. Yang, Y. Yan, D. Qi, and Z. Cao, Colloid Polym. Sci., 292, 1585 (2014).

    Article  CAS  Google Scholar 

  29. J. Chen, R. Zhang, L. Han, B. Tu, and D. Zhao, Nano Res., 6, 871 (2013).

    Article  CAS  Google Scholar 

  30. S. C. Warren, M. R. Perkins, A. M. Adams, M. Kamperman, A. A. Burns, H. Arora, E. Herz, T. Suteewong, H. Sai, Z. Li, J. Werner, J. Song, U. Werner-Zwanziger, J. W. Zwanziger, M. Grätzel, F. J. DiSalvo, and U. Wiesner, Nat. Mater., 11, 460 (2012).

    Article  CAS  Google Scholar 

  31. M. Wu, R. Wu, F. Wang, L. Ren, J. Dong, Z. Liu, and H. Zou, Anal. Chem., 9, 3529 (2009).

    Article  Google Scholar 

  32. C. Jo, H. J. Lee, and M. Oh, Adv. Mater., 23, 1716 (2011).

    Article  CAS  Google Scholar 

  33. I. Chaduc, J. Parvole, T. Doussineau, R. Antoine, E. Bourgeatlami, and M. Lansalot, Polymer (Guildf), 70, 118 (2015).

    Article  CAS  Google Scholar 

  34. J. Parvole, I. Chaduc, K. Ako, O. Spalla, A. Thill, S. Ravaine, E. Duguet, M. Lansalot, and E. Bourgeat-lami, Macromolecules, 45, 7009 (2012).

    Article  CAS  Google Scholar 

  35. I. A. Rahman and V. Padavettan, J. Nanomater., 2012, 1 (2012).

    Article  Google Scholar 

  36. J. J. Heikkinen, J. P. Heiskanen, and O. E. O. Hormi, Polym. Adv. Technol., 17, 426 (2006).

    Article  CAS  Google Scholar 

  37. C.-S. Wu and H.-T. Liao, Des. Monomers Polym., 6, 369 (2003).

    Article  CAS  Google Scholar 

  38. Y. G. Hsu, K. H. Lin, and I. L. Chiang, Mater. Sci. Eng. B, 87, 31 (2001).

    Article  Google Scholar 

  39. D. J. Haloi, S. Ata, and N. K. Singha, Ind. Eng. Chem. Res., 51, 9760 (2012).

    Article  CAS  Google Scholar 

  40. Y. Chen, J. Qin, Y. Wang, and Z. Li, J. Nanopart. Res., 17, 1 (2014).

    Article  Google Scholar 

  41. J. Lei, L. Wang, and J. Zhang, ACS Nano, 5, 3447 (2011).

    Article  CAS  Google Scholar 

  42. M. Wisniewska, T. Urban, E. Grzadka, V. I. Zarko, and V. M. Gun’ko, Colloid Polym. Sci., 292, 699 (2014).

    Article  CAS  Google Scholar 

  43. A. G. Bykov, S. Y. Lin, G. Loglio, V. V. Lyadinskaya, R. Miller, and B. A. Noskov, Colloids Surf. A: Physicochem. Eng., 354, 382 (2010).

    Article  CAS  Google Scholar 

  44. B. Fouconnier, A. Román-Guerrero, and E. J. Vernon-Carter, Colloids Surf. A: Physicochem. Eng., 400, 10 (2012).

    Article  CAS  Google Scholar 

  45. H. Hassander, B. Johansson, and B. Törnell, Colloids Surf., 40, 93 (1989).

    Article  CAS  Google Scholar 

  46. N. Zainal, S. Shukor and K. Razak, National Colloquium on Process Control, Process Control Research Group, Universiti Sains Malaysia, Penang, 2013.

    Google Scholar 

  47. Y.-D. Chiang, H.-Y. Lian, S.-Y. Leo, S.-G. Wang, Y. Yamauchi, and K. C.-W. Wu, J. Phys. Chem. C, 115, 13158 (2011).

    Article  CAS  Google Scholar 

  48. H.-J. Gläsel, F. Bauer, H. Ernst, M. Findeisen, E. Hartmann, H. Langguth, R. Mehnert and R. Schubert, Macromol. Chem. Phys., 201, 2765 (2000).

    Article  Google Scholar 

  49. J. Wu, Q. Tang, H. Sun, J. Lin, H. Ao, M. Huang, and Y. Huang, Langmuir, 24, 4800 (2008).

    Article  CAS  Google Scholar 

  50. Y. Li, X. Chen, M. Zhang, W. Luo, J. Yang and F. Zhu, Macromolecules, 41, 4873 (2008).

    Article  CAS  Google Scholar 

  51. Y. Wan and S. Yu, J. Phys. Chem. C, 112, 3641 (2008).

    Article  CAS  Google Scholar 

  52. A. Costela, I. GarcÍa-moreno, O. GarcÍa, D. Del Agua, and R. Sastre, Appl. Phys. B, 80, 749 (2005).

    Article  CAS  Google Scholar 

  53. Y.-D. Chiang, H.-Y. Lian, S.-Y. Leo, S.-G. Wang, Y. Yamauchi, and K. C.-W. Wu, J. Phys. Chem. C, 115, 13158 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Ali Farzi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarabady, M.M., Farzi, G.A. Tunable morphology for silica/poly(acrylic acid) hybrid nanoparticles via facile one-pot synthesis. Macromol. Res. 24, 716–724 (2016). https://doi.org/10.1007/s13233-016-4101-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4101-x

Keywords

Navigation