Biosynthesis of colloidal silver nanoparticles: Their characterization and potential antibacterial activity


The colloidal silver nanoparticles (AgNPs) were synthesized in situ under white light at room temperature using aqueous silk fibroin (SF) obtained from Bombyxmori silk. The UV-visible spectroscopy revealed the formation of AgNPs by showing a typical surface Plasmon resonance (SPR) band at 422 nm from the UV-visible spectra. The transmission electron microscope (TEM) images show that the formed nanoparticles were spherical in shape with smooth surfaces. The particle diameter was around 35-40 nm. Further the X-ray diffraction (XRD) analysis confirms the nanocrystalline phase of silver with face centered cubic (FCC) crystal structure. The biogenic silver nanoparticles exhibited significant antibacterial activity against human bacterial pathogens Bacillus subtilis, Staphylococcus aureus, Salmonella typhi and Escherichia coli.

This is a preview of subscription content, log in to check access.


  1. (1)

    P. Aramwit, N. Bang, J. Ratanvaraporn, and S. Ekgasit, Nanoscale Res. Lett., 9, 79 (2014).

    Article  Google Scholar 

  2. (2)

    M. Sing, S. Sing, S. Prasad, and I. S. Gambhir, Dig. J. Nanomater. Biostruct., 3, 115 (2008).

    Google Scholar 

  3. (3)

    L. Mulfinger, S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, and C. Boritz, J. Chem. Educ., 84, 322 (2007).

    Article  Google Scholar 

  4. (4)

    M. Epifani, C. Giannini, L. Tapfer, and L. Vasanelli, J. Am. Ceram. Soc., 83, 2385 (2000).

    CAS  Article  Google Scholar 

  5. (5)

    Z. Yang, H. Qian, H. Chen, and J. N. Anker, J. Colloid Interface Sci., 352, 285 (2010).

    CAS  Article  Google Scholar 

  6. (6)

    J. J. Zhu, X. H. Liao, X. N. Zhao, and H. Y. Hen, Mater. Lett., 49, 91 (2001).

    CAS  Article  Google Scholar 

  7. (7)

    J. J. Zhu, S. W. Liu, O. Palchik, Y. Koltypin, and A. Gedanken, Langmuir, 16, 6396 (2000).

    CAS  Article  Google Scholar 

  8. (8)

    R. A. Salkar, P. Jeevanandam, S. T. Aruna, Y. Koltypin, and A. Gedanken, J. Mater Chem., 9, 1333 (1999).

    CAS  Article  Google Scholar 

  9. (9)

    Y. Xie, R. Ye, and H. Liu, Colloids Surf. A, 279, 175 (2006).

    CAS  Article  Google Scholar 

  10. (10)

    R. Thomas, A. Viswan, J. Mathew, and E. K. Radhakrishnan, Nano Biomed. Eng., 4, 139 (2012).

    CAS  Google Scholar 

  11. (11)

    J. Chen, J. Wang, X. Zhang, and Y. Jin, Mater. Chem. Phys., 108, 421 (2008).

    CAS  Article  Google Scholar 

  12. (12)

    B. Ankamwar, M. Chaudhary, and M. Sastry, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chem., 35, 19 (2005).

    CAS  Article  Google Scholar 

  13. (13)

    M. G. Guzman, J. Dille, and S. Godet, World Acad. Sci. Eng. Technol., 43, 357 (2008).

    Google Scholar 

  14. (14)

    J. Xie, J. Y. Lee, D. I. C. Wang, and Y.P. Ting, ACS Nano, 1, 429 (2007).

    CAS  Article  Google Scholar 

  15. (15)

    V. K. Sharma, R. A. Yangard, and Y. Lin, Adv. Colloidl Interface Sci., 145, 83 (2009).

    CAS  Article  Google Scholar 

  16. (16)

    P. Aramwt, N. Bang, J. Ratanvaraporn, and S. Ekgasit, Nanoscale Res. Lett., 9, 79 (2014).

    Article  Google Scholar 

  17. (17)

    K. Anuradha, P. Bangal, and S. S. Madhavendra, Macromol. Res., 24, 152 (2016).

    CAS  Article  Google Scholar 

  18. (18)

    P. R. Subba Reddy, K. M. Rao, K. S. V. Krishna Rao, Y. Shchipunov, and C. S. Ha, Macromol. Res., 22, 832 (2014).

    CAS  Article  Google Scholar 

  19. (19)

    H. El-Sherif, M. El-Masry, and A. Kansoh, Macromol. Res., 19, 1157 (2011).

    CAS  Article  Google Scholar 

  20. (20)

    M. S. Lee, S. Kumar, W. G. La, J. S. Oh, H. I. Choi, S. H. Lee, H. Shin, and H. S. Yang, Macromol. Res., 24, 385 (2016).

    CAS  Article  Google Scholar 

  21. (21)

    P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003).

    CAS  Article  Google Scholar 

  22. (22)

    R. Madhukumar, B. L. Rao, S. Asha, B. Narayana, K. Byrappa, Y. Wang, D. Yao, and Y. Sangappa, Adv. Mater. Lett., 6, 1088 (2015).

    Article  Google Scholar 

  23. (23)

    X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. Kaplan, Biomacromolecules, 12, 1686 (2011).

    CAS  Article  Google Scholar 

  24. (24)

    F. G. Omenetto and D. L. Kaplan, Science, 329, 528 (2010).

    CAS  Article  Google Scholar 

  25. (25)

    H. J. Jin and D. L. Kaplan, Nature, 424, 1057 (2003).

    CAS  Article  Google Scholar 

  26. (26)

    S. Asha Sangappa, N. Prashantha, C. K. Sharath, and S. Ganesh, AIP Conf. Proc., 1591, 219 (2014).

    Article  Google Scholar 

  27. (27)

    X. Fei, M. Jia, X. Du, Y. Yang, R. Zhang, Z. Shao, X. Zhao, and X. Chen, Biomacromolecules, 14, 4483 (2013).

    CAS  Article  Google Scholar 

  28. (28)

    P. Azmath, S. Baker, D. Rakshith, and S. Satish, Saudi Pharm. J., 24, 140 (2016).

    Article  Google Scholar 

  29. (29)

    S. Baker, K. M. Kumar, P. Santosh, D. Rakshith, and S. Satish, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 134, 345 (2015).

    Article  Google Scholar 

  30. (30)

    S. D. Sarker, L. Nahar, and Y. Kumarasamy, Methods, 42, 321 (2007).

    CAS  Article  Google Scholar 

  31. (31)

    Y. N. Rao, D. Banerjee, A. Datta, S. K. Das, R. Guin, and A. Saha, Radiat. Phys. Chem., 79, 1240 (2010).

    CAS  Article  Google Scholar 

  32. (32)

    G. Mie, Ann. Phys. Lpz., 25, 377 (1908).

    CAS  Article  Google Scholar 

  33. (33)

    A. Vasconcelos, G. Freddi, and A. Cavaco-paulo, Biomacromolecules, 9, 1299 (2008).

    CAS  Article  Google Scholar 

  34. (34)

    Q. Dong, H. Su, and D. J. Zhang, J. Phys. Chem. B, 109, 17429 (2005).

    CAS  Article  Google Scholar 

  35. (35)

    P. R. Selvakannan, A. Swami, D. Srisathyanarayanan, P. S. Shirude, R. Pasricha, A. B. Mandale, and M. Sastry, Langmuir, 20, 7825 (2004).

    CAS  Article  Google Scholar 

  36. (36)

    A. Gole, C. Dash, V. Ramakrishnan, S. R. Sainkar, A. B. Mandale, M. Rao, and M. Sastry, Langmuir, 17, 1674 (2001).

    CAS  Article  Google Scholar 

  37. (37)

    D. L. Kaplan, S. Fossey, and C. M. Mello, Mater. Res. Soc. Bull., 17, 41 (1992).

    CAS  Article  Google Scholar 

  38. (38)

    M. Kim, J. W. Byun, D. S. Shin, and Y. S. Lee, Mater. Res. Bull., 44, 334 (2009).

    CAS  Article  Google Scholar 

  39. (39)

    O. Rathore and D. Y. Sogah, Macromolecules, 34, 1477 (2001).

    CAS  Article  Google Scholar 

  40. (40)

    D. Qun, S. Huilan, and Z. Di, J. Phys. Chem. B,, 109, 17429 (2005).

    Article  Google Scholar 

  41. (41)

    V. Tamilselvi and K. V. Radha, Dig. J. Nanomater. Biostruct., 8, 1101 (2013).

    Google Scholar 

  42. (42)

    Y. Gou, R. Zhou, X. Ye, S. Gao, and X. Li, Sci. Technol. Adv. Mater., 16, 015004 (2015).

    Article  Google Scholar 

  43. (43)

    R. Mariselvam, A. J. A. Ranjitsing, A. Usha Raja Nanthini, K. Kalirajan, C. Padmalatha, and P. Mosae Selvakumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 129, 537 (2014).

    CAS  Article  Google Scholar 

  44. (44)

    G. R. Salunke, S. Ghosh, R. J. Santosh Kumar, S. Khade, P. Vashisth, T. Kale, S. Chopade, V. Pruthi, G. Kundu, and J. R. Bellare, Int. J. Nanomedicine, 9, 2635 (2014).

    Google Scholar 

  45. (45)

    M. A. Biel, C. Sievert, M. Usacheva, M. Teichert, and J. Balcom, Int. Forum Allergy Rhinol., 1, 329 (2011).

    Article  Google Scholar 

  46. (46)

    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, Nanotechnology, 16, 2346 (2005).

    CAS  Article  Google Scholar 

  47. (47)

    J. S. Kim, E. Kuk, K. N. Yu, J.H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, and C. Y. Hwang, Nanomedicine, 3, 95 (2007).

    CAS  Google Scholar 

  48. (48)

    M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero, and M. Galdiero, Appl. Microbiol. Biotechnol., 98, 1951 (2014).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yallappa Sangappa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shivananda, C.S., Asha, S., Madhukumar, R. et al. Biosynthesis of colloidal silver nanoparticles: Their characterization and potential antibacterial activity. Macromol. Res. 24, 684–690 (2016).

Download citation


  • silk fibroin
  • silver nanoparticles
  • UV-visible
  • XRD
  • TEM
  • antibacterial activity