Skip to main content

Molecular characterization of thermoreversibility and temperature dependent physical properties of cellulose solution in N,N-dimethylacetamide and lithium chloride

Abstract

The effects of temperature on the physical properties of the cellulose solutions in N,N-dimethylacetamide (DMAc) containing 9 (solvent-9) or 6 wt% (solvent-6) lithium chloride (LiCl) were investigated over the temperature range of 30 to 80 °C. The cellulose solution exhibited a lower critical solution temperature (LCST) behavior over the temperature range observed. The content of LiCl affected the thermoreversible LCST behavior of cellulose solutions, which was almost thermoreversible over the temperature range of 30 to 80 °C for solvent-9 and 30 to 50 °C for solvent-6. The partial thermoreversibility of cellulose chain between 60 and 80 °C in solvent-6 could be explained by increased intramolecular interactions between cellulose molecules with increasing temperature. The thermoreversible LCST behavior of cellulose solution for solvent-9 was further supported by dynamic light scattering measurement which also verified the larger decrease of cellulose chain dimensions in solvent-6 between 60 and 80 °C. The cellulose solutions in DMAc/LiCl exhibited little thermal degradation in the short-term aging between 30 and 80 °C. However, they produced a little thermal degradation in the long-term aging between 80 and 100 °C.

This is a preview of subscription content, access via your institution.

References

  1. N. A. J. A. Cuculo, M. W. Frey, and D. R. Salem, Structure Formation in Polymeric Fiber, Hanser Gardner Publications, Inc, Munich, 2001.

    Google Scholar 

  2. S. P. S. Chundawat, G. Bellesia, N. Uppugundla, L. da Costa Sousa, D. Gao, A. M. Cheh, U. P. Agarwal, C. M. Bianchetti, G. N. Phillips, P. Langan, V. Balan, S. Gnanakaran, and B. E. Dale, J. Am. Chem. Soc., 133, 11163 (2011).

    CAS  Article  Google Scholar 

  3. Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc., 124, 9074 (2002).

    CAS  Article  Google Scholar 

  4. C. L. McCormick, P. A. Callais, and B. H. Hutchinson, Macromolecules, 18, 2394 (1985).

    CAS  Article  Google Scholar 

  5. C. Roy, T. Budtova, and P. Navard, Biomacromolecules, 4, 259 (2003).

    CAS  Article  Google Scholar 

  6. M. Gericke, K. Schlufter, T. Liebert, T. Heinze, T. Budtova, 10, 1188 (2009).

    CAS  Google Scholar 

  7. F. L. Tim, J. H. Thomas, and J. E. Kevin, Cellulose Solvents: For Analysis, Shaping and Chemical Modification, American Chemical Society, Washington, DC, 2010.

    Google Scholar 

  8. R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002).

    CAS  Article  Google Scholar 

  9. H. Zhang, J. Wu, J. Zhang, and J. He, Macromolecules, 38, 8272 (2005).

    CAS  Article  Google Scholar 

  10. J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C. C. Han, and S. Kuga, Macromolecules, 41, 9345 (2008).

    CAS  Article  Google Scholar 

  11. A. Striegel, Carbohydr. Polym., 34, 267 (1997).

    CAS  Article  Google Scholar 

  12. A. Potthast, T. Rosenau, J. Sartori, H. Sixta, and P. Kosma, Polymer, 44, 7 (2003).

    CAS  Article  Google Scholar 

  13. A.-L. Dupont, Polymer, 44, 4117 (2003).

    CAS  Article  Google Scholar 

  14. T. Matsumoto, D. Tatsumi, N. Tamai, and T. Takaki, Cellulose, 8, 275 (2001).

    CAS  Article  Google Scholar 

  15. U. Henniges, M. Kostic, A. Borgards, T. Rosenau, and A. Potthast, Biomacromolecules, 12, 871 (2011).

    CAS  Article  Google Scholar 

  16. M. Hasani, U. Henniges, A. Idström, L. Nordstierna, G. Westman, T. Rosenau, and A. Potthast, Carbohydr. Polym., 98, 1565 (2013).

    CAS  Article  Google Scholar 

  17. E. Sjöholm, K. Gustafsson, B. Eriksson, W. Brown, and A. Colmsjö, Carbohydr. Polym., 41, 153 (2000).

    Article  Google Scholar 

  18. M. Terbojevich, A. Cosani, G. Conio, A. Ciferri, and E. Bianchi, Macromolecules, 18, 640 (1985).

    CAS  Article  Google Scholar 

  19. Y. H. Cho, K. S. Dan, and B. C. Kim, Korea-Aust. Rheol. J., 20, 73 (2008).

    Google Scholar 

  20. S. I. Song and B. C. Kim, Polymer, 45, 2381 (2004).

    CAS  Article  Google Scholar 

  21. M. Heskins and J. E. Guillet, J. Macromol. Sci. Chem., 2, 1441 (1968).

    CAS  Article  Google Scholar 

  22. Z. Cui, B. H. Lee, and B. L. Vernon, Biomacromolecules, 8, 1280 (2007).

    CAS  Article  Google Scholar 

  23. A. K. Dikshit and A. K. Nandi, Macromolecules, 33, 2616 (2000).

    CAS  Article  Google Scholar 

  24. A. Noro, Y. Matsushita, and T. P. Lodge, Macromolecules, 41, 5839 (2008).

    CAS  Article  Google Scholar 

  25. A. Potthast, T. Rosenau, H. Sixta, and P. Kosma, Tetrahedron Lett., 43, 7757 (2002).

    CAS  Article  Google Scholar 

  26. J. Malešic, J. Kolar, M. Strlic, D. Kocar, D. Fromageot, J. Lemaire, and O. Haillant, Polym. Degrad. Stab., 89, 64 (2005).

    Article  Google Scholar 

  27. A. Potthast, T. Rosenau, J. Sartori, H. Sixta, and P. Kosma, Polymer, 44, 7 (2003).

    CAS  Article  Google Scholar 

  28. A. Emsley, M. Ali, and R. Heywood, Polymer, 41, 8513 (2000).

    CAS  Article  Google Scholar 

  29. T. Röder, B. Morgenstern, N. Schelosky, and O. Glatter, Polymer, 42, 6765 (2001).

    Article  Google Scholar 

  30. S. Chrapava, D. Touraud, T. Rosenau, A. Potthast, and W. Kunz, Phys. Chem. Chem. Phys., 5, 1842 (2003).

    CAS  Article  Google Scholar 

  31. N. Tamai, H. Aono, D. Tatsumi, and T. Matsumoto, J. Soc. Rheol. Jap., 31, 119 (2003).

    CAS  Article  Google Scholar 

  32. M. P. Vega, E. L. Lima, and J. C. Pinto, Polymer, 42, 3909 (2001).

    CAS  Article  Google Scholar 

  33. S. J. Bae, M. K. Joo, Y. Jeong, S. W. Kim, W.-K. Lee, Y. S. Sohn, and B. Jeong, Macromolecules, 39, 4873 (2006).

    CAS  Article  Google Scholar 

  34. T. W. G. Solomons, Organic Chemistry, Wiley, New York, 1984.

    Google Scholar 

  35. C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, and Y. Huang, J. Phys. Chem. B, 118, 9507 (2014).

    CAS  Article  Google Scholar 

  36. A. M. Striegel, J. Chilean Chem. Soc., 48, 73 (2003).

    CAS  Article  Google Scholar 

  37. Y. Eom and B. C. Kim, Polymer, 55, 2570 (2014).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Chul Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khaliq, Z., Kim, B.C. Molecular characterization of thermoreversibility and temperature dependent physical properties of cellulose solution in N,N-dimethylacetamide and lithium chloride. Macromol. Res. 24, 547–555 (2016). https://doi.org/10.1007/s13233-016-4073-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4073-x

Keywords

  • cellulose solution
  • LCST behavior
  • thermoreversibility
  • dynamic light scattering