Macromolecular Research

, Volume 24, Issue 6, pp 547–555 | Cite as

Molecular characterization of thermoreversibility and temperature dependent physical properties of cellulose solution in N,N-dimethylacetamide and lithium chloride

Articles
  • 65 Downloads

Abstract

The effects of temperature on the physical properties of the cellulose solutions in N,N-dimethylacetamide (DMAc) containing 9 (solvent-9) or 6 wt% (solvent-6) lithium chloride (LiCl) were investigated over the temperature range of 30 to 80 °C. The cellulose solution exhibited a lower critical solution temperature (LCST) behavior over the temperature range observed. The content of LiCl affected the thermoreversible LCST behavior of cellulose solutions, which was almost thermoreversible over the temperature range of 30 to 80 °C for solvent-9 and 30 to 50 °C for solvent-6. The partial thermoreversibility of cellulose chain between 60 and 80 °C in solvent-6 could be explained by increased intramolecular interactions between cellulose molecules with increasing temperature. The thermoreversible LCST behavior of cellulose solution for solvent-9 was further supported by dynamic light scattering measurement which also verified the larger decrease of cellulose chain dimensions in solvent-6 between 60 and 80 °C. The cellulose solutions in DMAc/LiCl exhibited little thermal degradation in the short-term aging between 30 and 80 °C. However, they produced a little thermal degradation in the long-term aging between 80 and 100 °C.

Keywords

cellulose solution LCST behavior thermoreversibility dynamic light scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    N. A. J. A. Cuculo, M. W. Frey, and D. R. Salem, Structure Formation in Polymeric Fiber, Hanser Gardner Publications, Inc, Munich, 2001.Google Scholar
  2. (2).
    S. P. S. Chundawat, G. Bellesia, N. Uppugundla, L. da Costa Sousa, D. Gao, A. M. Cheh, U. P. Agarwal, C. M. Bianchetti, G. N. Phillips, P. Langan, V. Balan, S. Gnanakaran, and B. E. Dale, J. Am. Chem. Soc., 133, 11163 (2011).CrossRefGoogle Scholar
  3. (3).
    Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc., 124, 9074 (2002).CrossRefGoogle Scholar
  4. (4).
    C. L. McCormick, P. A. Callais, and B. H. Hutchinson, Macromolecules, 18, 2394 (1985).CrossRefGoogle Scholar
  5. (5).
    C. Roy, T. Budtova, and P. Navard, Biomacromolecules, 4, 259 (2003).CrossRefGoogle Scholar
  6. (6).
    M. Gericke, K. Schlufter, T. Liebert, T. Heinze, T. Budtova, 10, 1188 (2009).Google Scholar
  7. (7).
    F. L. Tim, J. H. Thomas, and J. E. Kevin, Cellulose Solvents: For Analysis, Shaping and Chemical Modification, American Chemical Society, Washington, DC, 2010.Google Scholar
  8. (8).
    R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002).CrossRefGoogle Scholar
  9. (9).
    H. Zhang, J. Wu, J. Zhang, and J. He, Macromolecules, 38, 8272 (2005).CrossRefGoogle Scholar
  10. (10).
    J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C. C. Han, and S. Kuga, Macromolecules, 41, 9345 (2008).CrossRefGoogle Scholar
  11. (11).
    A. Striegel, Carbohydr. Polym., 34, 267 (1997).CrossRefGoogle Scholar
  12. (12).
    A. Potthast, T. Rosenau, J. Sartori, H. Sixta, and P. Kosma, Polymer, 44, 7 (2003).CrossRefGoogle Scholar
  13. (13).
    A.-L. Dupont, Polymer, 44, 4117 (2003).CrossRefGoogle Scholar
  14. (14).
    T. Matsumoto, D. Tatsumi, N. Tamai, and T. Takaki, Cellulose, 8, 275 (2001).CrossRefGoogle Scholar
  15. (15).
    U. Henniges, M. Kostic, A. Borgards, T. Rosenau, and A. Potthast, Biomacromolecules, 12, 871 (2011).CrossRefGoogle Scholar
  16. (16).
    M. Hasani, U. Henniges, A. Idström, L. Nordstierna, G. Westman, T. Rosenau, and A. Potthast, Carbohydr. Polym., 98, 1565 (2013).CrossRefGoogle Scholar
  17. (17).
    E. Sjöholm, K. Gustafsson, B. Eriksson, W. Brown, and A. Colmsjö, Carbohydr. Polym., 41, 153 (2000).CrossRefGoogle Scholar
  18. (18).
    M. Terbojevich, A. Cosani, G. Conio, A. Ciferri, and E. Bianchi, Macromolecules, 18, 640 (1985).CrossRefGoogle Scholar
  19. (19).
    Y. H. Cho, K. S. Dan, and B. C. Kim, Korea-Aust. Rheol. J., 20, 73 (2008).Google Scholar
  20. (20).
    S. I. Song and B. C. Kim, Polymer, 45, 2381 (2004).CrossRefGoogle Scholar
  21. (21).
    M. Heskins and J. E. Guillet, J. Macromol. Sci. Chem., 2, 1441 (1968).CrossRefGoogle Scholar
  22. (22).
    Z. Cui, B. H. Lee, and B. L. Vernon, Biomacromolecules, 8, 1280 (2007).CrossRefGoogle Scholar
  23. (23).
    A. K. Dikshit and A. K. Nandi, Macromolecules, 33, 2616 (2000).CrossRefGoogle Scholar
  24. (24).
    A. Noro, Y. Matsushita, and T. P. Lodge, Macromolecules, 41, 5839 (2008).CrossRefGoogle Scholar
  25. (25).
    A. Potthast, T. Rosenau, H. Sixta, and P. Kosma, Tetrahedron Lett., 43, 7757 (2002).CrossRefGoogle Scholar
  26. (26).
    J. Malešic, J. Kolar, M. Strlic, D. Kocar, D. Fromageot, J. Lemaire, and O. Haillant, Polym. Degrad. Stab., 89, 64 (2005).CrossRefGoogle Scholar
  27. (27).
    A. Potthast, T. Rosenau, J. Sartori, H. Sixta, and P. Kosma, Polymer, 44, 7 (2003).CrossRefGoogle Scholar
  28. (28).
    A. Emsley, M. Ali, and R. Heywood, Polymer, 41, 8513 (2000).CrossRefGoogle Scholar
  29. (29).
    T. Röder, B. Morgenstern, N. Schelosky, and O. Glatter, Polymer, 42, 6765 (2001).CrossRefGoogle Scholar
  30. (30).
    S. Chrapava, D. Touraud, T. Rosenau, A. Potthast, and W. Kunz, Phys. Chem. Chem. Phys., 5, 1842 (2003).CrossRefGoogle Scholar
  31. (31).
    N. Tamai, H. Aono, D. Tatsumi, and T. Matsumoto, J. Soc. Rheol. Jap., 31, 119 (2003).CrossRefGoogle Scholar
  32. (32).
    M. P. Vega, E. L. Lima, and J. C. Pinto, Polymer, 42, 3909 (2001).CrossRefGoogle Scholar
  33. (33).
    S. J. Bae, M. K. Joo, Y. Jeong, S. W. Kim, W.-K. Lee, Y. S. Sohn, and B. Jeong, Macromolecules, 39, 4873 (2006).CrossRefGoogle Scholar
  34. (34).
    T. W. G. Solomons, Organic Chemistry, Wiley, New York, 1984.Google Scholar
  35. (35).
    C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, and Y. Huang, J. Phys. Chem. B, 118, 9507 (2014).CrossRefGoogle Scholar
  36. (36).
    A. M. Striegel, J. Chilean Chem. Soc., 48, 73 (2003).CrossRefGoogle Scholar
  37. (37).
    Y. Eom and B. C. Kim, Polymer, 55, 2570 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Organic & Nano EngineeringHanyang UniversitySeoulKorea

Personalised recommendations