Macromolecular Research

, Volume 24, Issue 5, pp 463–470 | Cite as

Molecular Characterization on the Anomalous Viscosity Behavior of Cellulose Solutions in N,N-Dimethyl Acetamide and Lithium Chloride

  • Zubair Khaliq
  • Byoung Chul KimEmail author


The physical properties of dilute cellulose solutions in N,N-dimethyl acetamide (DMAc) including 9 wt% lithium chloride (LiCl) were investigated in terms of concentration, temperature and molecular weight of cellulose. Over the concentration range of 0.01 to 2.5 g/dL, the viscosity of the cellulose solutions exhibited a lower critical solution temperature (LCST) behavior which proved thermoreversible between 30 and 60 °C. The LCST behavior was further supported by dynamic light scattering measurement. In the extremely dilute concentration range, 0.01 to 0.08 g/dL, the reduced viscosity (η red ) of cellulose solutions was increased with decreasing concentration. The anomalous coil expansion with decreasing concentration could be explained by the increase of the conductivity of cellulose solutions with decreasing concentration, which was also verified by dynamic light scattering experiment. In the concentration range of 0.1 and 2.5 g/dL, both cellulose solutions gave a drastic increase of η red in the vicinity of the critical concentration (C*), 0.9 g/dL. The slope of the curve of η red vs. concentration was higher for the cellulose of higher molecular weight, but it did not change with temperature between 30 and 60 °C.


cellulose N,N-dimethylacetamide/LiCl LCST behavior thermoreversibility polyelectrolyte effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    H. Koga, T. Saito, T. Kitaoka, M. Nogi, K. Suganuma, and A. Isogai, Biomacromolecules, 14, 1160 (2013).CrossRefGoogle Scholar
  2. (2).
    A. Walther, J. V. Timonen, I. Díez, A. Laukkanen, and O. Ikkala, Adv. Mater., 23, 2924 (2011).CrossRefGoogle Scholar
  3. (3).
    M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Adv. Mater., 21, 1595 (2009).CrossRefGoogle Scholar
  4. (4).
    K. Ben Azouz, E. C. Ramires, W. Van den Fonteyne, N. El Kissi, and A. Dufresne, ACS Macro Lett., 1, 236 (2012).CrossRefGoogle Scholar
  5. (5).
    E. E. Brown, D. Hu, N. Abu Lail, and X. Zhang, Biomacromolecules, 14, 1063 (2013).CrossRefGoogle Scholar
  6. (6).
    N. A. J. A. Cuculo, M. W. Frey, D. R. Salem, Structure Formation in Polymeric Fiber, Hanser Gardner Publications, Inc, Munich, 2001.Google Scholar
  7. (7).
    S. P. Chundawat, G. Bellesia, N. Uppugundla, L. da Costa Sousa, D. Gao, A. M. Cheh, U. P. Agarwal, C. M. Bianchetti, G. N. Phillips, and P. Langan, J. Am. Chem. Soc., 133, 11163 (2011).CrossRefGoogle Scholar
  8. (8).
    Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc., 124, 9074 (2002).CrossRefGoogle Scholar
  9. (9).
    T. I. Kondo, Polysaccharides, Structural Diversity and Functional Versatility, Marcel Dekker, New York, 1998.Google Scholar
  10. (10).
    D. B. Kim, W. S. Lee, S. M. Jo, Y. M. Lee, and B. C. Kim, Polym. J., 33, 139 (2001).CrossRefGoogle Scholar
  11. (11).
    C. Roy, T. Budtova, and P. Navard, Biomacromolecules, 4, 259 (2003).CrossRefGoogle Scholar
  12. (12).
    M. Gericke, K. Schlufter, T. Liebert, T. Heinze, and T. Budtova, Biomacromolecules, 10, 1188 (2009).CrossRefGoogle Scholar
  13. (13).
    C. L. McCormick, P. A. Callais, and B. H. Hutchinson, Macromolecules, 18, 2394 (1985).CrossRefGoogle Scholar
  14. (14).
    T. R. Dawsey and C. L. McCormick, J. Macromol. Sci., Part C, 30, 405 (1990).CrossRefGoogle Scholar
  15. (15).
    F. L. Tim, J. H. Thomas, and J. E. Kevin, Cellulose Solvents: For Analysis, Shaping and Chemical Modification, American Chemical Society, 2010.Google Scholar
  16. (16).
    R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002).CrossRefGoogle Scholar
  17. (17).
    H. Zhang, J. Wu, J. Zhang, and J. He, Macromolecules, 38, 8272 (2005).CrossRefGoogle Scholar
  18. (18).
    J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C. C. Han, and S. Kuga, Macromolecules, 41, 9345 (2008).CrossRefGoogle Scholar
  19. (19).
    A. Striegel, Carbohydr. Polym., 34, 267 (1997).CrossRefGoogle Scholar
  20. (20).
    A. Potthast, T. Rosenau, J. Sartori, H. Sixta, and P. Kosma, Polymer, 44, 7 (2003).CrossRefGoogle Scholar
  21. (21).
    A. L. Dupont, Polymer, 44, 4117 (2003).CrossRefGoogle Scholar
  22. (22).
    C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, and Y. Huang, J. Phys. Chem. B, 118, 9507 (2014).CrossRefGoogle Scholar
  23. (23).
    H. Ute, S. Sonja, R. Thomas, and P. Antje, in Cellulose Solvents: For Analysis, Shaping and Chemical Modification, American Chemical Society, 2010, Vol. 1033, pp 165–177.Google Scholar
  24. (24).
    S. Chrapava, D. Touraud, T. Rosenau, A. Potthast, and W. Kunz, Phys. Chem. Chem. Phys., 5, 1842 (2003).CrossRefGoogle Scholar
  25. (25).
    T. Schult, T. Hjerde, O. I. Optun, P. J. Kleppe, and S. Moe, Cellulose, 9, 149 (2002).CrossRefGoogle Scholar
  26. (26).
    T. Matsumoto, D. Tatsumi, N. Tamai, and T. Takaki, Cellulose, 8, 275 (2001).CrossRefGoogle Scholar
  27. (27).
    U. Henniges, M. Kostic, A. Borgards, T. Rosenau, and A. Potthast, Biomacromolecules, 12, 871 (2011).CrossRefGoogle Scholar
  28. (28).
    M. Hasani, U. Henniges, A. Idström, L. Nordstierna, G. Westman, T. Rosenau, and A. Potthast, Carbohydr. Polym., 98, 1565 (2013).CrossRefGoogle Scholar
  29. (29).
    E. Sjöholm, K. Gustafsson, B. Eriksson, W. Brown, and A. Colmsjö, Carbohydr. Polym., 41, 153 (2000).CrossRefGoogle Scholar
  30. (30).
    M. Terbojevich, A. Cosani, G. Conio, A. Ciferri, and E. Bianchi, Macromolecules, 18, 640 (1985).CrossRefGoogle Scholar
  31. (31).
    Y. H. Cho, K. S. Dan, and B. C. Kim, Korea-Aust. Rheol. J., 20, 73 (2008).Google Scholar
  32. (32).
    S. I. Song and B. C. Kim, Polymer, 45, 2381 (2004).CrossRefGoogle Scholar
  33. (33).
    X. Dong, J.-F. Revol, and D. Gray, Cellulose, 5, 19 (1998).CrossRefGoogle Scholar
  34. (34).
    F. M. Winnik, Macromolecules, 20, 2745 (1987).CrossRefGoogle Scholar
  35. (35).
    P. Donnelly, J. Entry, D. Crawford, and K. Cromack, Microb. Ecol., 20, 289 (1990).CrossRefGoogle Scholar
  36. (36).
    A. Potthast, T. Rosenau, H. Sixta, and P. Kosma, Tetrahedron Lett., 43, 7757 (2002).CrossRefGoogle Scholar
  37. (37).
    M. P. Vega, E. L. Lima, and J. C. Pinto, Polymer, 42, 3909 (2001).CrossRefGoogle Scholar
  38. (38).
    T. Röder, B. Morgenstern, N. Schelosky, and O. Glatter, Polymer, 42, 6765 (2001).CrossRefGoogle Scholar
  39. (39).
    Y. Eom and B. C. Kim, Polymer, 55, 2570 (2014).CrossRefGoogle Scholar
  40. (40).
    T. W. G. Solomons, Organic Chemistry, Wiley, New York, 1984.Google Scholar
  41. (41).
    V. M. Zelenkovskii, L. A. Fen’ko, and A. V. Bil’dyukevich, Polym. Sci. Ser. B, 48, 28 (2006).CrossRefGoogle Scholar
  42. (42).
    D. Das, B. Das, and D. Hazra, J. Solution Chem., 31, 425 (2002).CrossRefGoogle Scholar
  43. (43).
    M. R. Kasaai, J. Appl. Polym. Sci., 86, 2189 (2002).CrossRefGoogle Scholar
  44. (44).
    M. Bercea, C. Ioan, S. Ioan, B. Simionescu, and C. Simionescu, Prog. Polym. Sci., 24, 379 (1999).CrossRefGoogle Scholar
  45. (45).
    P.-D. Hong, C.-M. Chou, and C.-H. He, Polymer, 42, 6105 (2001).CrossRefGoogle Scholar
  46. (46).
    K. H. Lee, I. K. Song, and B. C. Kim, Korea-Aust. Rheol. J., 20, 213 (2008).Google Scholar
  47. (47).
    C. B. Shogbon, J.-L. Brousseau, H. Zhang, B. C. Benicewicz, and Y. A. Akpalu, Macromolecules, 39, 9409 (2006).CrossRefGoogle Scholar
  48. (48).
    J. R. Schaefgen and C. F. Trivisonno, J. Am. Chem. Soc., 73, 4580 (1951).CrossRefGoogle Scholar
  49. (49).
    D. Baird and J. Smith, J. Polym. Sci., Polym. Chem. Ed., 16, 61 (1978).CrossRefGoogle Scholar
  50. (50).
    R. S. Porter and J. F. Johnson, Chem. Rev., 66, 1 (1966).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Organic & Nano EngineeringHanyang UniversitySeoulKorea

Personalised recommendations