Skip to main content
Log in

Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering

  • Reviews
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Hydrogels are physically and chemically cross-linked, 3D, porous, hydrated molecular structures that mimic the native tissue microenvironment. Hydrogels fabricated with environmentally sensitive polymers can possess additional properties such as thermoresponsiveness. This property originates from its phase transition from gel to solution and vice versa with temperature variation. Phase transition mechanisms also depend on the interaction between the polymers and surrounding environment. Their thermoresponsiveness makes hydrogels attractive for drug delivery, gene therapy, cell culture, and tissue engineering approaches. The resemblance to living tissue of such thermoresponsive hydrogels produced by crosslinking of natural polymers opens up many biomedical application opportunities for human use. The most intensively studied natural thermoresponsive polymer is poly(N-isopropyl-acrylamide) (PNIPAM). This review focuses on the phase transition mechanism in thermoresponsive PNIPAM, the factors affecting the behavior of the gel, its specific properties, and, in particular, the role of PNIPAM’s phase transition in drug delivery, cell culture, and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Hoffman, Adv. Drug Deliv. Rev., 54, 3 (2002).

    Article  CAS  Google Scholar 

  2. S. J. Buwalda, K. W. Boere, P. J. Dijkstra, J. Feijen, T. Vermonden, and W. E. Hennink, J. Control. Release, 190, 254 (2014).

    Article  CAS  Google Scholar 

  3. Y. Qiu and K. Park, Adv. Drug Deliv. Rev., 53, 321 (2001).

    Article  CAS  Google Scholar 

  4. X. Hu, Q. Lu, L. Sun, P. Cebe, X. Wang, X. Zhang, and D. L. Kaplan, Biomacromolecules, 11, 3178 (2010).

    Article  CAS  Google Scholar 

  5. A. S. Hoffman, Ann. N. Y. Acad. Sci., 944, 62 (2001).

    Article  CAS  Google Scholar 

  6. M. Casolaro, S. Bottari, and Y. Ito, Biomacromolecules, 7, 1439 (2006).

    Article  CAS  Google Scholar 

  7. N. A. Peppas and W. Leobandung, J. Biomater. Sci. Polym. Ed., 15, 125 (2004).

    Article  CAS  Google Scholar 

  8. X. Z. Shu, S. Ahmad, Y. Liu, and G. D. Prestwich, J. Biomed. Mater. Res. A, 79, 902 (2006).

    Article  Google Scholar 

  9. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000).

    Article  CAS  Google Scholar 

  10. B. Jeong, S. W. Kim, and Y. H. Bae, Adv. Drug Deliv. Rev., 54, 37 (2002).

    Article  CAS  Google Scholar 

  11. M. P. Lutolf, Nat. Mater., 8, 451 (2009).

    Article  CAS  Google Scholar 

  12. R. Masteikova, Z. Chalupova, and Z. Sklubalova, Medicina (Kaunas), 39 Suppl 2, 19 (2003).

    Google Scholar 

  13. G. David, M. Cristea, C. Balhui, D. Timpu, F. Doroftei, and B. C. Simionescu, Biomacromolecules, 13, 2263 (2012).

    Article  CAS  Google Scholar 

  14. L. W. Xia, R. Xie, X. J. Ju, W. Wang, Q. Chen, and L.Y. Chu, Nat. Commun., 4, 2226 (2013).

    Google Scholar 

  15. R. Yu and S. Zheng, J. Biomater. Sci. Polym. Ed., 22, 2305 (2011).

    Article  CAS  Google Scholar 

  16. K. S. Soppimath, T. M. Aminabhavi, A. M. Dave, S. G. Kumbar, and W. E. Rudzinski, Drug Dev. Ind. Pharm., 28, 957 (2002).

    Article  CAS  Google Scholar 

  17. S. Gallagher, L. Florea, K. J. Fraser, and D. Diamond, Int. J. Mol. Sci., 15, 5337 (2014).

    Article  Google Scholar 

  18. B. Xing, C. W. Yu, K. H. Chow, P. L. Ho, D. Fu, and B. Xu, J. Am. Chem. Soc., 124, 14846 (2002).

    Article  CAS  Google Scholar 

  19. E. Ruel-Gariepy and J. C. Leroux, Eur. J. Pharm. Biopharm., 58, 409 (2004).

    Article  CAS  Google Scholar 

  20. J. T. Zhang, S. W. Huang, and R. X. Zhuo, Macromol. Biosci., 4, 575 (2004).

    Article  CAS  Google Scholar 

  21. D. Schmaljohann, Adv. Drug Deliv. Rev., 58, 1655 (2006).

    Article  CAS  Google Scholar 

  22. J. T. Zhang, R. Bhat, and K. D. Jandt, Acta Biomater., 5, 488 (2009).

    Article  CAS  Google Scholar 

  23. P. Gupta, K. Vermani, and S. Garg, Drug Discov. Today, 7, 569 (2002).

    Article  CAS  Google Scholar 

  24. A. S. Negi and C. O. Osuji, Phys. Rev. E Stat., Nonlin. Soft Matter Phys., 80, 010404 (2009).

    Article  Google Scholar 

  25. S. Ohya, S. Kidoaki, and T. Matsuda, Biomaterials, 26, 3105 (2005).

    Article  CAS  Google Scholar 

  26. H. Li, T. Y. Ng, Y. K. Yew, and K. Y. Lam, Biomacromolecules, 6, 109 (2005).

    Article  CAS  Google Scholar 

  27. C. Wang, J. Kopecek, and R. J. Stewart, Biomacromolecules, 2, 912 (2001).

    Article  CAS  Google Scholar 

  28. R. Vazquez-Duhalt, R. Tinoco, P. D’Antonio, L. D. Topoleski, and G. F. Payne, Bioconjug. Chem., 12, 301 (2001).

    Article  CAS  Google Scholar 

  29. G. D. Nicodemus and S. J. Bryant, Tissue Eng. Part B Rev., 14, 149 (2008).

    Article  CAS  Google Scholar 

  30. C. T. Huynh, M. K. Nguyen, and D. S. Lee, Acta Biomater., 7, 3123 (2011).

    Article  CAS  Google Scholar 

  31. T. Garg, S. Singh, and A. K. Goyal, Crit. Rev. Ther. Drug Carrier Syst., 30, 369 (2013).

    Article  CAS  Google Scholar 

  32. C. Li, M. M. Alam, S. Bolisetty, J. Adamcik, and R. Mezzenga, Chem. Commun. (Camb), 47, 2913 (2011).

    Article  CAS  Google Scholar 

  33. T. Aoyagi, M. Ebara, K. Sakai, Y. Sakurai, and T. Okano, J. Biomater. Sci. Polym. Ed., 11, 101 (2000).

    Article  CAS  Google Scholar 

  34. B. Wang, X. D. Xu, Z. C. Wang, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo, Colloids Surf. B: Biointerfaces, 64, 34 (2008).

    Article  CAS  Google Scholar 

  35. U. G. Spizzirri, M. Curcio, G. Cirillo, T. Spataro, O. Vittorio, N. Picci, S. Hampel, F. Iemma, and F. P. Nicoletta, Pharmaceutics, 7, 413 (2015).

    Article  Google Scholar 

  36. A. K. Gaharwar, N. A. Peppas, and A. Khademhosseini, Biotechnol. Bioeng., 111, 441 (2014).

    Article  CAS  Google Scholar 

  37. Y. Okuyama, R. Yoshida, K. Sakai, T. Okano, and Y. Sakurai, J. Biomater. Sci. Polym. Ed., 4, 545 (1993).

    Article  CAS  Google Scholar 

  38. D. S. Jones, C. P. Lorimer, C. P. McCoy, and S. P. Gorman, J. Biomed. Mater. Res. B: Appl. Biomater., 85, 417 (2008).

    Article  Google Scholar 

  39. D. C. Coughlan and O. I. Corrigan, Int. J. Pharm., 313, 163 (2006).

    Article  CAS  Google Scholar 

  40. D. Q. Wu, F. Qiu, T. Wang, X. J. Jiang, X. Z. Zhang, and R. X. Zhuo, ACS Appl. Mater. Interfaces, 1, 319 (2009).

    Article  CAS  Google Scholar 

  41. A. C. Rincon, I. T. Molina-Martinez, B. de Las Heras, M. Alonso, C. Bailez, J.C. Rodriguez-Cabello, and R. Herrero-Vanrell, J. Biomed. Mater. Res. A, 78, 343 (2006).

    Article  CAS  Google Scholar 

  42. P. C. Bessa, R. Machado, S. Nurnberger, D. Dopler, A. Banerjee, A. M. Cunha, J. C. Rodriguez-Cabello, H. Redl, M. van Griensven, R. L. Reis, and M. Casal, J. Control. Release, 142, 312 (2010).

    Article  CAS  Google Scholar 

  43. X. Huang, B. R. Nayak, and T. L. Lowe, J. Polym. Sci., A: Polym. Chem., 42, 5054 (2004).

    Article  CAS  Google Scholar 

  44. A. Serres, M. Baudys, and S. W. Kim, Pharm. Res., 13, 196 (1996).

    Article  CAS  Google Scholar 

  45. C. Ramkissoon-Ganorkar, F. Liu, M. Baudys, and S. W. Kim, J. Biomater. Sci. Polym. Ed., 10, 1149 (1999).

    Article  CAS  Google Scholar 

  46. S. W. Kim and H. A. Jacobs, Drug Dev. Iind. Pharm., 20, 575 (1994).

    Article  CAS  Google Scholar 

  47. X. J. Loh, Z.-X. Zhang, Y.-L. Wu, T. S. Lee, and J. Li, Macromolecules, 42, 194 (2009).

    Article  CAS  Google Scholar 

  48. J. Akimoto, M. Nakayama, K. Sakai, and T. Okano, Biomacromolecules, 10, 1331 (2009).

    Article  CAS  Google Scholar 

  49. J. Akimoto, M. Nakayama, K. Sakai, and T. Okano, Mol. Pharm., 7, 926 (2010).

    Article  CAS  Google Scholar 

  50. C. J. Rijcken, T. F. Veldhuis, A. Ramzi, J. D. Meeldijk, C. F. van Nostrum, and W. E. Hennink, Biomacromolecules, 6, 2343 (2005).

    Article  CAS  Google Scholar 

  51. M. Qasim, P. Baipaywad, N. Udomluck, D. Na, and H. Park, Macromol. Res., 22, 1125 (2014).

    Article  CAS  Google Scholar 

  52. J. M. Knipe and N. A. Peppas, Regen. Biomater., 1, 57 (2014).

    Article  Google Scholar 

  53. B. D. Ratner and S. J. Bryant, Annu. Rev. Biomed. Eng., 6, 41 (2004).

    Article  CAS  Google Scholar 

  54. N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang, Annu. Rev. Biomed. Eng., 2, 9 (2000).

    Article  CAS  Google Scholar 

  55. R. Ravichandran, S. Sundarrajan, J. R. Venugopal, S. Mukherjee, and S. Ramakrishna, Macromol. Biosci., 12, 286 (2012).

    Article  CAS  Google Scholar 

  56. Y. Kumashiro, M. Yamato, and T. Okano, Annu. Biomed. Eng., 38, 1977 (2010).

    Article  Google Scholar 

  57. M. Yamato and T. Okano, Mater. Today, 7, 42 (2004).

    Article  CAS  Google Scholar 

  58. Y. Haraguchi, T. Shimizu, M. Yamato, and T. Okano, RSC Adv., 2, 2184 (2012).

    Article  CAS  Google Scholar 

  59. M. Nitschke, S. Gramm, T. Gotze, M. Valtink, J. Drichel, B. Voit, K. Engelmann, and C. Werner, J. Biomed. Mater. Res. A, 80, 1003 (2007).

    Article  Google Scholar 

  60. A. Gandhi, A. Paul, S. O. Sen, and K. K. Sen, Asian J. Pharm. Sci., 10, 99 (2015).

    Article  Google Scholar 

  61. M. Temtem, T. Barroso, T. Casimiro, J. F. Mano, and A. Aguiar- Ricardo, J. Supercrit. Fluids, 66, 398 (2012).

    Article  CAS  Google Scholar 

  62. I. K. Kwon and T. Matsuda, Biomaterials, 27, 986 (2006).

    Article  CAS  Google Scholar 

  63. S. E. Kirkland, R. M. Hensarling, S. D. McConaughy, Y. Guo, W. L. Jarrett, and C. L. McCormick, Biomacromolecules, 9, 481 (2008).

    Article  CAS  Google Scholar 

  64. Z. Ma, D. M. Nelson, Y. Hong, and W. R. Wagner, Biomacromolecules, 11, 1873 (2010).

    Article  CAS  Google Scholar 

  65. S. Ashraf, B. H. Cha, J. S. Kim, J. Ahn, I. Han, H. Park, and S. H. Lee, Osteoarthr. Cartil., 24, 196 (2016).

    Article  CAS  Google Scholar 

  66. J. P. Chen and T. H. Cheng, Macromol. Biosci., 6, 1026 (2006).

    Article  CAS  Google Scholar 

  67. J. Zhang, R. Xie, S.-B. Zhang, C.-J. Cheng, X.-J. Ju, and L.-Y. Chu, Polymer, 50, 2516 (2009).

    Article  CAS  Google Scholar 

  68. X.-D. Xu, X.-Z. Zhang, J. Yang, S.-X. Cheng, R.-X. Zhuo, and Y.-Q. Huang, Langmuir, 23, 4231 (2007).

    Article  CAS  Google Scholar 

  69. J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, Nature, 489, 133 (2012).

    Article  CAS  Google Scholar 

  70. K. Haraguchi and T. Takehisa, Adv. Mater., 14, 1120 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hansoo Park or Soo-Hong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, S., Park, HK., Park, H. et al. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering. Macromol. Res. 24, 297–304 (2016). https://doi.org/10.1007/s13233-016-4052-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4052-2

Keywords

Navigation