Skip to main content
Log in

Interconnection of electrospun nanofibers via a post co-solvent treatment and its open pore size effect on pressure-retarded osmosis performance

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Design of support layer structures for asymmetric thin film composite membranes has drawn keen attention to improve the power density for salinity gradient power based on pressure-retarded osmosis. This study has interests on electrospun nanofiber-based support layers, and the effects of its open pore sizes are attractively stated. To control the open pore size, a counter charge deposition method was introduced. To retain the open pore size, all the nanofibers were interconnected by a post co-solvent treatment technology. For a thin film composite membrane, an interfacial polymerization was used to fabricate a polyamide active layer on the electrospun nanofiber-based support layers. It was found that although the maximum power density achieved with an open pore size of 2.4 μm2 was 0.14 W/m2, it increased significantly up to 9.5 W/m2 when the pore size was reduced to 0.65 μm2. The cause is the salt flux which increases with increasing the open pore sizes under applied pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Thorsen and T. Holt, J. Membr. Sci., 335, 103 (2009).

    Article  CAS  Google Scholar 

  2. K. Gerstandt, K. V. Peinemann, S. E. Skilhagen, T. Thorsen, and T. Holt, Desalination, 224, 64 (2008).

    Article  CAS  Google Scholar 

  3. A. Dai and K. E. Treberth, J. Hydrometeorol., 3, 660 (2002).

    Article  Google Scholar 

  4. F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, Nano Lett., 11, 1810 (2011).

    Article  CAS  Google Scholar 

  5. B. E. Logan and M. Elimelech, Nature, 488, 313 (2012).

    Article  CAS  Google Scholar 

  6. Q. She, X. Jin, and C. Y. Tang, J. Membr. Sci., 401, 262 (2012).

    Article  Google Scholar 

  7. P. G. Ingole, W. Choi, K. H. Kim, C. H. Park, W. K. Choi, and H. K. Lee, Chem. Eng. J., 243, 137 (2014).

    Article  CAS  Google Scholar 

  8. R. Patel, W. S. Chi, S. H. Ahn, C. H. Park, H.-K. Lee, and J. H. Kim, Chem. Eng. J., 247, 1 (2014).

    Article  CAS  Google Scholar 

  9. P. G. Ingole, K. H. Kim, C. H. Park, W. K. Choi, and H. K. Lee, RSC Adv., 4, 51430 (2014).

    Article  CAS  Google Scholar 

  10. J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, K. Nymeijer, and C. J. N. Buisman, J. Membr. Sci., 288, 218 (2007).

    Article  CAS  Google Scholar 

  11. S. C. Chen, C. F. Wan, and T.-S. Chung, J. Membr. Sci., 479, 190 (2015).

    Article  CAS  Google Scholar 

  12. P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, J. Membr. Sci., 319, 214 (2008).

    Article  CAS  Google Scholar 

  13. J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, and L. Jiang, J. Am. Chem. Soc., 136, 12265 (2014).

    Article  CAS  Google Scholar 

  14. B. J. Feinberg, G. Z. Ramon, and E. M. V. Hoek, J. Membr. Sci., 476, 311 (2015).

    Article  CAS  Google Scholar 

  15. N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, and M. Elimelech, Environ. Sci. Technol., 45, 4360 (2011).

    Article  CAS  Google Scholar 

  16. I. J. Roh, J.-J. Kim, and S. Y. Park, J. Membr. Sci., 197, 199 (2002).

    Article  CAS  Google Scholar 

  17. X. Song, Z. Liu, and D. D. Sun, Energy Environ. Sci., 6, 1199 (2013).

    Article  CAS  Google Scholar 

  18. M. Wang, H.-J. Jin, D. L. Kaplan, and G. C. Rutledge, Macromolecules, 37, 6856 (2004).

    Article  CAS  Google Scholar 

  19. L. Huang, S. S. Manickam, and J. R. McCutcheon, J. Membr. Sci., 436, 213 (2013).

    Article  CAS  Google Scholar 

  20. N.-N. Bui, M. L. Lind, E. M. V. Hoek, and J. R. McCutcheon, J. Membr. Sci., 385-386, 10 (2011).

    Article  CAS  Google Scholar 

  21. N.-N. Bui and J. R. McCutcheon, Environ. Sci. Technol., 47, 1761 (2012).

    Google Scholar 

  22. L. Huang, J. T. Arena, S. S. Manickam, X. Jiang, B. G. Willis, and J. R. McCutcheon, J. Membr. Sci., 460, 241 (2014).

    Article  CAS  Google Scholar 

  23. Q. She, D. Hou, J. Liu, K. H. Tan, and C. Y. Tang, J. Membr. Sci, 445, 170 (2013).

    Article  CAS  Google Scholar 

  24. L. H. Catalani, G. Collins, and M. Jaffe, Macromolecules, 40, 1693 (2007).

    Article  CAS  Google Scholar 

  25. C. H. Park, K.-H. Kim, J.-C. Lee, and J. Lee, Poly. Bull., 61, 521 (2008).

    Article  CAS  Google Scholar 

  26. S. Kaur, R. Barhate, S. Sundarrajan, T. Matsuura, and S. Ramakrishna, Desalination, 279, 201 (2011).

    Article  CAS  Google Scholar 

  27. K. Yoon, B. S. Hsiao, and B. Chu, Polymer, 50, 2893 (2009).

    Article  CAS  Google Scholar 

  28. C. H. Park, J. H. Kim, M. Ree, B.-H. Sohn, J. C. Jung, and W.-C. Zin, Polymer, 45, 4507 (2004).

    Article  CAS  Google Scholar 

  29. S. Hong, C. F. Schaber, K. Dening, E. Appel, S. N. Gorb, and H. Lee, Adv. Mater., 26, 7581 (2014).

    Article  CAS  Google Scholar 

  30. C. H. Park and J. Lee, Macromol. Mater. Eng., 295, 544 (2010).

    Article  CAS  Google Scholar 

  31. B. A. Miller-Chou and J. L. Koenig, Prog. Polym. Sci., 28, 1223 (2003).

    Article  CAS  Google Scholar 

  32. K. L. Lee, R. W. Baker, and H. K. Lonsdale, J. Membr. Sci., 8, 141 (1981).

    Article  CAS  Google Scholar 

  33. S. Chou, L. Shi, R. Wang, C. Y. Tang, C. Qiu, and A. G. Fane, Desalination, 261, 365 (2010).

    Article  CAS  Google Scholar 

  34. S. Bouazizi and S. Nasr, J. Mol. Liq., 162, 78 (2011).

    Article  CAS  Google Scholar 

  35. J.-G. Gai, X.-L. Gong, W.-L. Kang, X. Zhang, and W.-W. Wang, Desalination, 333, 52 (2014).

    Article  CAS  Google Scholar 

  36. F.-J. Fu, S.-P. Sun, S. Zhang, and T.-S. Chung, J. Membr. Sci., 469, 488 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Ho Park, Jung-Hyun Lee or Jonghwi Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C.H., Bae, H., Kwak, S.J. et al. Interconnection of electrospun nanofibers via a post co-solvent treatment and its open pore size effect on pressure-retarded osmosis performance. Macromol. Res. 24, 314–322 (2016). https://doi.org/10.1007/s13233-016-4044-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4044-2

Keywords

Navigation