Advertisement

Macromolecular Research

, Volume 24, Issue 2, pp 131–142 | Cite as

Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a co-culture system

  • Boram Lee
  • Muhammad Shafiq
  • Youngmee Jung
  • Jong-Chul Park
  • Soo Hyun KimEmail author
Article

Abstract

Tissue-engineered vascular scaffolds provide a promising solution for the replacement of diseased vascular structures. However, a major challenge lies in enhancing endothelialization, host cell ingrowth, and angiogenesis. In this study, we investigated the feasibility of developing a bio-tubular scaffold from human dermal fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVEC) co-cultured on electrospun poly(L-lactide-co-ε-caprolactone) membranes to address these issues. Confluent layers of HDFs stimulated the organization of HUVECs into capillary-like networks in an indirect contact (two-dimensional) co-culture on membranes. Bio-tubular scaffolds fabricated from co-cultured membranes were either grown statically in vitro or implanted subcutaneously in severe combined immunodeficient mice for up to 4 weeks for biocompatibility evaluation and functional performance. In vitro examination of co-cultures on scaffolds showed collagen remodeling and an improvement in biomechanical properties up to day 14. Morphological analysis of in vitro grown bio-tubular scaffolds revealed good attachment and growth of both cell types. After one month, co-cultured scaffolds in vivo showed higher infiltration of host cells and collagen remodeling as compared to the HDF-seeded grafts. After 4 weeks, thin continuous layers of endothelial cells and smooth muscle cells were formed as shown by staining with an antibody specific for CD31and α-actin (α-SMA). On the contrary, HDF-seeded scaffolds remained free of α-SMA-positive cells at all time points, whereas few CD31+ cells appeared after 4 weeks. Thus, co-cultured membranes provide a solution for enhancing endothelialization, tissue regeneration, and growth in bio-tubular scaffolds and may have broader applications in regenerative medicine.

Keywords

angiogenesis endothelial cells electrospinning vascular scaffolds PLCL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. J. Epstein, D. Polsky, F. Yang, and I. Yang, JAMA, 305, 1769 (2011).CrossRefGoogle Scholar
  2. (2).
    M. S. Conte, FASEB J., 12, 43 (1998).Google Scholar
  3. (3).
    R. Y. Kannan, H. J. Salacinski, P. E. Butler, G. Hamilton, and A. M. Seifalian, J. Biomed. Mater. Res., 74, 570 (2005).CrossRefGoogle Scholar
  4. (4).
    P. Zilla, P. Preiss, P. Groscurth, F. Rosemeier, M. Deutsch, J. Odell, C. Heidinger, R. Fasol, and U. von Oppell, Surgery, 116, 524 (1994).Google Scholar
  5. (5).
    E. I. Ercolani, C. D. Gaudio, and A. Bianco, J. Tissue Eng. Regen. Med., 9, 861 (2015).CrossRefGoogle Scholar
  6. (6).
    S. P. Hoerstrup, Mrcs. I. Cummings, M. Lachat, F. J. Schoen, R. Jenni, S. Leschka, S. Neuenschwander, D. Schmidt, A. Mol, C. Gunter, M. Gossi, M. Genoni, and G. Zund, Circulation, 114, I159 (2006).CrossRefGoogle Scholar
  7. (7).
    C. Huang, Y. Tang, X. Liu, A. Sutti, Q. Ke, and X. Mo, Soft Matter, 7, 10812 (2011).CrossRefGoogle Scholar
  8. (8).
    T. Huynh, G. Abraham, J. Murray, K. Brockbank, P. O. Hagen, and S. Sullivan, Nat. Biotechnol., 17, 1083 (1999).CrossRefGoogle Scholar
  9. (9).
    H. Inoguchi, I. K. Kwon IK, E. Inoue, K. Takamizawa, Y. Maehara, and T. Matsuda, Biomaterials, 27, 1470 (2006).CrossRefGoogle Scholar
  10. (10).
    S. Levenberg, J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. V. Blitterswijk, R. C. Mulligan, P. A. D’Amore, and R. Langer, Nat. Biotechnol., 23, 879 (2005).CrossRefGoogle Scholar
  11. (11).
    S. Li, D. Sengupta, and S. Chien, Wiley Interdiscip. Rev. Syst. Biol. Med., 6, 61 (2014).CrossRefGoogle Scholar
  12. (12).
    X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna, Biomaterials, 25 1883 (2004).CrossRefGoogle Scholar
  13. (13).
    C. Wang, L. Cen, S. Yin, Q. Liu, W. Liu, Y. Cao, and L. Cui, Biomaterials, 31, 621 (2010).CrossRefGoogle Scholar
  14. (14).
    C. B. Weinberg and E. Bell, Science, 231, 397 (1986).CrossRefGoogle Scholar
  15. (15).
    N. L’Heureux, S. Pâquet, R. Labbé, L. Germain, and F. A. Auger, FASEB J., 12, 47 (1998).Google Scholar
  16. (16).
    N. L’Heureux, N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, N. A. Chronos, A. E. Kyles, C. R. Gregory, G. Hoyt, R. C. Robbins, and T. N. McAllister, Nat. Med., 12, 361 (2006).CrossRefGoogle Scholar
  17. (17).
    T. Shin’oka, G. Matsumura, N. Hibino, Y. Naito, M. Watanabe, T. Konuma, T. Sakamoto, M. Nagatsu, and H. Kurosawa, J. Thorac. Cardiovasc. Surg., 129, 1330 (2005).CrossRefGoogle Scholar
  18. (18).
    J. A. Hubbell, S. P. Massia, N. P. Desai, and P. D. Drumheller, Biotechniques, 9, 568 (1991).Google Scholar
  19. (19).
    S. Kaushal, G. E. Amiel, K. J. Guleserian, O. M. Shapira, T. Perry, F. W. Sutherland, E. Rabkin, A. M. Moran, F. J. Schoen, A. Atala, S. Soker, J. Bischoff, and J. E. Mayer, Nat. Med., 7, 1035 (2001).CrossRefGoogle Scholar
  20. (20).
    H. Li and J. Chang, Acta Biometer., 9, 6981 (2013).CrossRefGoogle Scholar
  21. (21).
    E. Chavakis and S. Dimmeler, Arterioscler. Thromb. Vasc. Biol., 22, 887 (2002).CrossRefGoogle Scholar
  22. (22).
    R. K. Jain, P. Au, J. Tam, D. G. Duda, and D. Fukumura, Nat. Biotechnol., 23, 821 (2005).CrossRefGoogle Scholar
  23. (23).
    C. H. Mun, Y. Jung, S.-H. Kim, S.-H. Lee, H. C. Kim, I. K. Kwon, and S. H. Kim, Tissue Eng. Part A, 18, 1608 (2012).CrossRefGoogle Scholar
  24. (24).
    E. Pektok, B. Nottelet, J. C. Tille, R. Gurny, A. Kalangos, M. Moeller, and B. H. Walpoth, Circulation, 118, 2563 (2008).CrossRefGoogle Scholar
  25. (25).
    H. C. Wu, T. W. Wang, P. L. Kang, Y. H. Tsuang, J. S. Sun, and F. H. Lin, Biomaterials, 28, 1385 (2007).CrossRefGoogle Scholar
  26. (26).
    X. Wu, E. Rabkin-Aikawa, K. J. Guleserian, T. E. Perry, Y. Masuda, F. W. Sutherland, F. J. Schoen, J. E. Mayer, and J. Bischoff, Am. J. Physiol. Heart Circ. Physiol., 287, H480 (2004).CrossRefGoogle Scholar
  27. (27).
    W. Wystrychowski, T. N. McAllister, K. Zagalski, N. Dusserre, L. Cierpka, and N. L’Heureux, J. Vasc. Surg., 60, 1353 (2014).CrossRefGoogle Scholar
  28. (28).
    H. Liu, X. Li, G. Zhou, H. Fan, and Y. Fan, Biomaterials, 32, 3784 (2011).CrossRefGoogle Scholar
  29. (29).
    P. L. Tremblay, V. Hudon, F. Berthod, L. Germain, and F. A. Auger, Am. J. Transplant., 5, 1002 (2005).CrossRefGoogle Scholar
  30. (30).
    P. J. Stahl, T. R. Chan, Y. I. Shen, G. Sun, S. Gerecht, S. M. Yu, Adv. Funct. Mater., 24, 3213 (2014).CrossRefGoogle Scholar
  31. (31).
    J. M. Sorrell, M. A. Baber, and A. I. Caplan, Cells Tissues Organs, 186, 157 (2007).CrossRefGoogle Scholar
  32. (32).
    L. A. Kunz-Schughart, J. A. Schroeder, M. Wondrak, F. van Rey, K. Lehle, F. Hofstaedter, and D. N. Wheatley, Am. J. Physiol. Cell Physiol., 290, C1385 (2006).CrossRefGoogle Scholar
  33. (33).
    F. G. Rocha, C. A. Sundback, N. J. Krebs, J. K. Leach, D. J. Mooney, S. W. Ashley, J. P. Vacanti, E. E. Whang, Biomaterials, 29, 2884 (2008).CrossRefGoogle Scholar
  34. (34).
    M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Graig, and D. R. Marshak, Science, 284, 143 (1999).CrossRefGoogle Scholar
  35. (35).
    J. M. Gimblem, A. J. Katz, and B. A. Bunnell, Circulation, 100, 1249 (2007).CrossRefGoogle Scholar
  36. (36).
    L. K. Karlsson, J. P. E. Junker, and G. Kratz, Ann. Vasc. Surg., 23, 663 (2009).CrossRefGoogle Scholar
  37. (37).
    H. Liu, B. Chen, and B. Lilly, Angiogenesis, 11, 223 (2008).CrossRefGoogle Scholar
  38. (38).
    V. R. Lyer, M. B. Eisen, D. T. Ross, G. Schuler, T. Moore, J. C. F. Lee, J. M. Trent, L. M. Staudt, J. H. Jr, M. S. Boguski, D. Lashkari, D. Shalon, D. Botstein, and P. O. Brown, Science, 283, 83 (1999).CrossRefGoogle Scholar
  39. (39).
    K. Kobayashi, Y. Imanishi, A. Miyauchi, N. Onoda, T. Kawata, H. Tahara, H. Goto, T. Miki, E. Ishimura, T. Sugimoto, T. Ishikawa, M. Inaba, and Y. Nishizawa, Eur. J. Endocrinol., 154, 93 (2006).CrossRefGoogle Scholar
  40. (40).
    B. S. Jang, Y. Jung, I. K. Kwon, C. H. Mun, and S. H. Kim, Macromol. Res., 20, 1234 (2012).CrossRefGoogle Scholar
  41. (41).
    W. Wu, R. A. Allen, and Y. Wang, Nat. Med., 18, 1148 (2012).CrossRefGoogle Scholar
  42. (42).
    M. Shafiq, Y. Jung, and S. H. Kim, J. Biomed. Mater. Res. A, 103, 2673 (2015).CrossRefGoogle Scholar
  43. (43).
    S. I. Jeong, B. S. Kim, Y. M. Lee, K. J. Ihn, S. H. Kim, and Y. H. Kim, Biomacromolecules, 5, 1303 (2004).CrossRefGoogle Scholar
  44. (44).
    J.-J. Hu, W. C. Chao, P. Y. Lee, and C. H. Huang, J. Mech. Behav. Biomed. Mater., 13, 140 (2012).CrossRefGoogle Scholar
  45. (45).
    M. Zhang, K. Wang, Z. Wang, B. Xing, Q. Zhao, and D. Kong, J. Mater. Sci., Mater. Med., 23, 2639 (2012).CrossRefGoogle Scholar
  46. (46).
    A. Lesman, J. Koffler, J. R. Atlas, Y. J. Blinder, and Z. S. Kam, Biomaterials, 32, 7856 (2011).CrossRefGoogle Scholar
  47. (47).
    J. J. Stankus, J. J. Guan, K. Fujimoto, and W. R. Wagner, Biomaterials, 27, 735 (2006).CrossRefGoogle Scholar
  48. (48).
    J. Nam, Y. Huang, S. Agarwal, and J. Lanutti, Tissue Eng., 13, 2249 (2007).CrossRefGoogle Scholar
  49. (49).
    R. K. Jain, Nat. Med., 9, 685 (2003).CrossRefGoogle Scholar
  50. (50).
    B. M. Baker, A. O. Gee, R. B. Metter, A. S. Nathan, R. A. Marklein, J. A. Burdick, and R. L. Mauck, Biomaterials, 29, 2348 (2008).CrossRefGoogle Scholar
  51. (51).
    K. Iwasaki, K. Kojima, S. Kodama, A. C. Paz, M. Chambers, M. Umezu, and C. A. Vacanti, Circulation, 118, S52 (2008).CrossRefGoogle Scholar
  52. (52).
    K. Shimizu, S. Sugiyama, M. Aikawa, Y. Fukumoto, E. Rabkin, P. Libby, and R. N. Mitchell, Nat. Med., 7, 738 (2001).CrossRefGoogle Scholar
  53. (53).
    T. Y. Kang, J. H. Lee, B. J. Kim, J. A. Kang, J. M. Hong, B. S. Kim, H. J. Cha, J. W. Rhie, and D. W. Cho, Biofabrication, 7, 015007 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2016

Authors and Affiliations

  • Boram Lee
    • 1
    • 2
  • Muhammad Shafiq
    • 1
    • 4
  • Youngmee Jung
    • 1
    • 4
  • Jong-Chul Park
    • 2
  • Soo Hyun Kim
    • 1
    • 3
    • 4
    Email author
  1. 1.Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and TechnologyCheongryang, SeoulKorea
  2. 2.Department of Medical ScienceYonsei UniversitySeoulKorea
  3. 3.KU-KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulKorea
  4. 4.Korea University of Science and TechnologyDaejeonKorea

Personalised recommendations