Bone-regenerative activity of parathyroid hormone-releasing nano-hydroxyapatite/poly(L-lactic acid) hybrid scaffolds


We developed a bone-regenerative scaffold based on systematic combination of porous organic-inorganic hybrid scaffolds and recombinant human parathyroid hormone (rhPTH). The hybrid scaffold was fabricated by immobilization of polyphosphate-functionalized nano-hydroxyapatite (PP-n-HAp) on the surface of porous poly(L-lactic acid) (PLLA) scaffolds, which was followed by rhPTH loading on the polyphosphates of n-HAp surfaces. The surface polyphosphate functionalities of PP-n-HAp enabled the stable chemical immobilization of n-HAp on the amine-treated pore surface of the PLGA scaffolds. rhPTH with a positive charge was bound at a high efficiency of 98.1~99.5% onto the anionic polyphosphates of PP-n-HAp immobilized on PLLA surfaces and was sustainably released for up to 50 days. The release rate was manipulated by adjusting the amount of loaded rhPTH, and the release data were moderately fitted to the Higuchi’s diffusion model. Four types of scaffolds were tested in rabbit calvarias models (PLLA only, PP-n-HAp-PLLA, rhPTH (2 µg) loaded PP-n-HAp-PLLA, and rhPTH (10 µg) loaded PP-n-HAp-PLLA). After 5 weeks, rhPTH-loaded PP-n-HAp-PLLA (2 and 10 µg of rhPTH) displayed higher bone growth than the control (PLLA only) group. Nano-HAp and sustained release of rhPTH might be synergistically able to enhance the bone healing in the animal model.

This is a preview of subscription content, log in to check access.


  1. (1)

    R. M. Neer, C. D. Arnaud, J. R. Zanchetta, R. Prince, G. A. Gaich, J. Y. Reginster, A. B. Hodsman, E. F. Eriksen, S. Ish-Shalom, H. K. Genant, O. Wang, D. Mellström, E. S. Oefjord, E. Marcinowska-Suchowierska, J. Salmi, H. Mulder, J. Halse, A. Z. Sawicki, and B. H. Mitlak, N. Engl. J. Med., 344, 1434 (2001).

    Article  CAS  Google Scholar 

  2. (2)

    S. L. Greenspan, H. G. Bone, M. P. Ettinger, D. A. Hanley, R. Lindsay, J. R. Zanchetta, C. M. Blosch, A. L. Mathisen, S. A. Morris, and T. B. Marriott, Ann. Intern. Med., 146, 326 (2007).

    Article  Google Scholar 

  3. (3)

    T. Manabe, S. Mori, T. Mashiba, Y. Kaji, K. Iwata, S. Komatsubara, A. Seki, Y.-X. Sun, and T. Yamamoto, Bone, 40, 1475 (2007).

    Article  CAS  Google Scholar 

  4. (4)

    A. B. Hodsman, M. Kisiel, J. D. Adachi, L. J. Fraher, and P. H. Watson, Bone, 27, 311 (2000).

    Article  CAS  Google Scholar 

  5. (5)

    Y. Jiang, J. J. Zhao, B. H. Mitlak, O. Wang, H. K. Genant, and E. F. Eriksen. J. Bone Miner. Res., 18, 1932 (2003).

    Article  CAS  Google Scholar 

  6. (6)

    K. T. Brixen, P. M. Christensen, C. Ejersted, and B. L. Langdahl, Basic Clin. Pharmacol. Toxicol., 94, 260 (2004).

    Article  CAS  Google Scholar 

  7. (7)

    P. Aggarwal and A. Zavras, Oral Dis., 18, 48 (2012).

    Article  CAS  Google Scholar 

  8. (8)

    H. L. Chan and L. K. McCauley, J. Dent. Res., 92, 18 (2013).

    Article  CAS  Google Scholar 

  9. (9)

    T. J. Wronski and C. F. Yen, Bone, 15, 51 (1994).

    Article  CAS  Google Scholar 

  10. (10)

    M. Gunness-Hey and J. M. Hock, Metab. Bone Dis. Res., 5, 171 (1984).

    Article  Google Scholar 

  11. (11)

    J. M. Hock, M. Centrella, and E. Canalis, Endocrinology, 122, 2899 (1988).

    Article  CAS  Google Scholar 

  12. (12)

    H. Oxlund, C. Ejersted, T. T. Andreassen, O. Torring, and M. H. Nilsson, Calcif. Tissue Int., 53, 394 (1993).

    CAS  Google Scholar 

  13. (13)

    T. J. Wronski, C. F. Yen, H. Qi, and L. M. Dann, Endocrinology, 132, 823 (1993).

    CAS  Google Scholar 

  14. (14)

    Y. Liu, Y. Lu, X. Tian, G. Cui, Y. Zhao, Q. Yang, S. Yu, G. Xing, and B. Zhang, Biomaterials, 30, 6276 (2009).

    Article  CAS  Google Scholar 

  15. (15)

    S. Fu, P. Ni, B. Wang, B. Chu, J. Peng, L. Zheng, X. Zhao, F. Luo, Y. Wei, and Z. Qian, Biomaterials, 33, 8363 (2012).

    Article  CAS  Google Scholar 

  16. (16)

    K. Kim, D. Dean, A. Lu, A. G. Mikos, and J. P. Fisher, Acta Biomater., 7, 1249 (2011).

    Article  CAS  Google Scholar 

  17. (17)

    H. Shen, X. Hu, F. Yang, J. Bei, and S. Wang, Acta Biomater., 6, 455 (2010).

    Article  CAS  Google Scholar 

  18. (18)

    A. Ronca, L. Ambrosio, and D. W. Grjpma, Acta Biomater., 9, 5989 (2013).

    Article  CAS  Google Scholar 

  19. (19)

    N. Ribeiro, S. R. Sousa, and F. J. Monteiro, J. Colloid Interface Sci., 351, 398 (2010).

    Article  CAS  Google Scholar 

  20. (20)

    S. E. Kim, H. W. Choi, H. J. Lee, J. H. Chang, J. Choi, K, J. Kim, H. J. Lim, Y. J. Jun, and S. C. Lee, J. Mater. Chem., 18, 4994 (2008).

    Article  CAS  Google Scholar 

  21. (21)

    B. J. Jeon, S. Y. Jeong, A. N. Koo, B. C. Kim, Y. S. Hwang, and S. C. Lee, Macromol. Res., 20, 715 (2012).

    Article  CAS  Google Scholar 

  22. (22)

    Z. Song, Z. Yin, C. Li, Z. Yang, C. Ning, D. Zhou, R. Wang, Y. Xu, and J. Qiu, Mater. Sci. Eng. C, 32, 1032 (2012).

    Article  CAS  Google Scholar 

  23. (23)

    F. J. Hua, G. E. Kim, J. D. Lee, Y. K. Son, and D. S. Lee, J. Biomed. Mater. Res., 63, 161 (2002).

    Article  CAS  Google Scholar 

  24. (24)

    W. Chunxiao, L. Jingjing, X. Yire, D. Min, W. Zhaohui, Q. Gaofu, S. Xiangchun, W. Xuejun, W. Jie, and L. Taiming, Regul. Pept., 141, 35 (2007).

    Article  Google Scholar 

  25. (25)

    B. M. Medi and J. Singh, Int. J. Pharm., 263, 25 (2003).

    Article  CAS  Google Scholar 

  26. (26)

    H. J. Lee, A. N. Koo, S. W. Lee, M. H. Lee, and S. C. Lee, J. Control. Release, 170, 198 (2013).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Yong-Dae Kwon or Sang Cheon Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koo, A.N., Ohe, J., Lee, D. et al. Bone-regenerative activity of parathyroid hormone-releasing nano-hydroxyapatite/poly(L-lactic acid) hybrid scaffolds. Macromol. Res. 23, 1168–1173 (2015).

Download citation


  • parathyroid hormone
  • nano-hydroxyapatite
  • sustained release
  • poly(L-lactic acid)
  • surface immobilization