Macromolecular Research

, Volume 23, Issue 9, pp 838–843 | Cite as

Soluble para-linked aromatic polyamides with pendent groups



A series of para-linked aromatic polyamides having inherent viscosity of 0.51–0.91 dL/g were prepared from 2-trifluoromethyl-4,4′-diaminodiphenyl ether, 2-cyano-4,4′-diaminodiphenyl ether, 2-trifluoromethyl-4,4′- diaminodiphenyl sulfide, and 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl sulfide. The structure of the polyamides was confirmed with FTIR, 1H NMR, and 13C NMR spectroscopy. The polyamides containing trifluoromethyl or cyano pendent groups were soluble in polar aprotic solvents while the corresponding polyamides without pendent groups showed limited solubility, requiring LiCl in NMP even though they had flexible ether or thioether linkages. The polymers showed good thermal stability over 400 °C both in N2 and air, and they had a high glass transition or melting temperature. All of the synthesized polyamides have low refractive indices (n) in the range of 1.6164 to 1.6613 and low birefringence (Δ) in the range of 0.0101 to 0.0305 with slightly higher n xy than n z , indicating that the polyamides films are slightly anisotropic.


polyamides trifluoromethyl group high temperature materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1) (a).
    P. E. Cassidy, Thermally Stable Polymers, Marcel Dekker, New York, 1980.Google Scholar
  2. (b).
    A. H. Frazer, High temperature Resistant Polymers, Wiley, New York, 1968.Google Scholar
  3. (c).
    V. Mittal, Thermally Stable and Flame Retardant Polymer Nanocomposites, Cambridge University Press, New York, 2011.CrossRefGoogle Scholar
  4. (2).
    H. F. Mark, in Encyclopedia of Polymer Science and Engineering, Fourth Ed., Wiley & Sons, Inc., Hoboken, 2014, Vol. 10, p 211.Google Scholar
  5. (3) (a).
    R. A. Gaudiana, R. A. Minns, H. G. Rogers, R. Sinta, P. Kalyanaraman, C. McGowan, and N. Weeks, J. Polym. Sci., Polym. Chem. Ed., 25, 1249 (1987).CrossRefGoogle Scholar
  6. (b).
    Y. Imai, High Perform. Polym., 7, 337 (1995).CrossRefGoogle Scholar
  7. (c).
    I. I. Harruna and K. B. Bota, in Polymeric Materials Encyclopedia, J. C. Salamone, Ed., CRC Press, Boca Raton, 1996, Vol. 1, p 396.Google Scholar
  8. (d).
    J. M. Garcia, F. C. Garcia, F. Serna, and J. L. de la Pena, Prog. Polym. Sci., 35, 623 (2012).CrossRefGoogle Scholar
  9. (4) (a).
    J. Preston, W. R. Krigbaum, and J. Asrar, in Cyclopolymerization and Polymers with Chain-Ring Structures, G. B. Butler and J. E. Kresta, Eds., ACS Symposium Series, American Chemical Society, Washington, D. C., 1982, Vol. 195, p 351.CrossRefGoogle Scholar
  10. (b).
    Y. Imai, N. Hamaoka, and M. Kakimoto, J. Polym. Sci., Polym. Chem. Ed., 22, 1291 (1984).CrossRefGoogle Scholar
  11. (c).
    M. Takayanagi and T. Takayose, J. Polym. Sci., Polym. Chem. Ed., 19, 1133 (1981).CrossRefGoogle Scholar
  12. (d).
    T. D. Greenwood, R. A. Kahley, J. F. Wolfe, A. St. Clare, and N. J. Johnson, J. Polym. Sci., Polym. Chem. Ed., 18, 1047 (1980).CrossRefGoogle Scholar
  13. (5) (a).
    M. Bruma, B. Schultz, and F. W. Mercer, J. Macromol. Sci., Pure Appl. Chem., 32, 259 (1995).CrossRefGoogle Scholar
  14. (b).
    R. A. Johnson and L. J. Mathias, Macromolecules, 28, 79 (1995).CrossRefGoogle Scholar
  15. (c).
    Y. Delaviz, A. Gungor, J. E. McGrath, and H. W. Gibson, Polymer, 34, 210 (1993).CrossRefGoogle Scholar
  16. (d).
    M. Yamashita, M. Kakimoto, and Y. Imai, J. Polym. Sci., Polym. Chem. Ed., 31, 1513 (1993).CrossRefGoogle Scholar
  17. (e).
    A. L. Cimercioglu and R. A. Weiss, J. Polym. Sci., Polym. Chem. Ed., 30, 1051 (1992).CrossRefGoogle Scholar
  18. (f).
    J. Preston, Polym. Eng. Sci. 15, 199 (1975).CrossRefGoogle Scholar
  19. (g).
    J. Preston, J. Polym. Sci., A-1, 4, 529 (1966).CrossRefGoogle Scholar
  20. (6) (a).
    D. J. Liaw, B. Y. Liaw, and C. M. Yang, Macromolecules, 32, 7248 (1999).CrossRefGoogle Scholar
  21. (b).
    K. R. Carter, P. T. Furuta, and V. Gong, Macromolecules, 31, 208 (1998).CrossRefGoogle Scholar
  22. (c).
    J. A. Mikroyanidis, Macromolecules, 28, 5177 (1995).CrossRefGoogle Scholar
  23. (d).
    H. J. Jeong, Y. Oishi, M. Kakimoto, and Y. Imai, J. Polym. Sci., Polym. Chem. Ed., 28, 3293 (1990).CrossRefGoogle Scholar
  24. (7) (a).
    I. S. Chung and S. Y. Kim, Polym. Bull., 38, 635 (1997).CrossRefGoogle Scholar
  25. (b).
    I. K. Spiliopoulos and J. A. Mikroyanidis, Macromolecules, 29, 5313 (1996).CrossRefGoogle Scholar
  26. (c).
    H. R. Kricheldorf and B. Schmidt, Macromolecules, 25, 5471 (1992).CrossRefGoogle Scholar
  27. (d).
    W. Hatke, H. T. Land, H. W. Schmidt, and W. Heitz, Macromol, Rapid Commun., 12, 235 (1991).CrossRefGoogle Scholar
  28. (e).
    J. Y. Jadhav, W. R. Krigbaum, and J. Preston, Macromolecules, 21, 540 (1988).CrossRefGoogle Scholar
  29. (f).
    H. G. Rogers, R. A. Gaudiana, W. C. Hollinsed, P. S. Kalyanaraman, J. S. Manello, C. McGowan, R. A. Minns, and R. Sahatjian, Macromolecules, 18, 1058 (1985).CrossRefGoogle Scholar
  30. (8).
    I. In and S. Y. Kim, Polymer, 47, 547 (2006).CrossRefGoogle Scholar
  31. (9).
    S. D. Kim, T. Byun, B. Lee, S. Y. Kim, and I. S. Chung, Macromol. Chem. Phys., 216, 1341 (2015).CrossRefGoogle Scholar
  32. (10) (a).
    I. S. Chung and S. Y. Kim, Macromolecules, 33, 3190 (2000).CrossRefGoogle Scholar
  33. (b).
    C. P. Yang, R. S. Chen, K. H. Chen, and Y. P. Chen, J. Chin. Chem. Soc., 49, 927 (2009).CrossRefGoogle Scholar
  34. (11).
    H. A. Kang, I. S. Chung, M. Kakimoto, and S. Y. Kim, Polym. J., 33, 284 (2001).CrossRefGoogle Scholar
  35. (12).
    S. D. Kim, S. Lee, J. Heo, S. Y. Kim, and I. S. Chung, Polymer, 54, 5648 (2013).CrossRefGoogle Scholar
  36. (13) (a).
    T. I. Bair, P. W. Morgan, and F. L. Killian, Macromolecules, 10, 1396 (1977).CrossRefGoogle Scholar
  37. (b).
    Y. Xu, W. Sun, W. Li, X. Hu, H. Zhou, S. Weng, F. Zhang, X. Zhang, J. Wu, D. Xu, and G. Xu, J. App. Polym. Sci., 77, 2685 (2000).CrossRefGoogle Scholar
  38. (14).
    G. Zhang, G.-S. Huang, and X.-J. Wang, J. Polym. Res., 18, 1261 (2011).CrossRefGoogle Scholar
  39. (15).
    A. S. Patil, M. M. Sayyed, N. S. Bhairamadgi, S. H. Han, and N. N. Maldar, Polym. Bull., 66, 1207 (2011).CrossRefGoogle Scholar
  40. (16) (a).
    S. D. Kim, D. Ka, I. S. Chung, and S. Y. Kim, Macromolecules, 45, 3023 (2012).CrossRefGoogle Scholar
  41. (b).
    S. D. Kim, S. Y. Kim, and I. S. Chung, J. Polym. Sci., Part A: Polym. Chem., 51, 4413 (2013).CrossRefGoogle Scholar
  42. (c).
    H. Choi, I. S. Chung, K. Hong, C. E. Park, and S. Y. Kim, Polymer, 49, 2644 (2008).CrossRefGoogle Scholar
  43. (d).
    S. D. Kim, S. Y. Kim, and I. S. Chung, Macromolecules, 47, 8846 (2014).CrossRefGoogle Scholar
  44. (17) (a).
    N. H. You, T. Higashihara, S. Yasuo, S. Ando, and M. Ueda, Polym. Chem., 1, 480 (2010).CrossRefGoogle Scholar
  45. (b).
    Y. Suzuki, T. Higashihara, S. Ando, and M. Ueda, Polym. J., 41, 860 (2009).CrossRefGoogle Scholar
  46. (c).
    J. Liu and M. Ueda, J. Mater. Chem., 19, 8907 (2009).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of ChemistryKAISTDaejeonKorea
  2. 2.Agency for Defense DevelopmentDaejeonKorea
  3. 3.Materials Research CenterSamsung Advanced Institute of Technology, Samsung ElectronicsSuwon, GyeonggiKorea
  4. 4.Polymer & Nanomaterial Research PartKRIBBDaejeonKorea

Personalised recommendations