Macromolecular Research

, Volume 23, Issue 9, pp 844–849 | Cite as

Effects of fiber length distribution on flow property and internal microstructure of an injection molded part

  • Soon Hyoung Hwang
  • Doo Jin Lee
  • Hye Rim Youn
  • Young Seok Song
  • Jae Ryoun Youn


Internal microstructures of micro-injection molded connectors were investigated to figure out the relationship between flow properties in the micro-channel and fiber length distributions (FLD). Micro-CT and image processing techniques were performed to convert the images obtained by Micro-CT into 3D structures and visualize the fiber length distributions. It was verified by both experimental and numerical analyses that the fiber length distribution affects significantly the processability and flowability of the composite melt for injection molding of microconnectors since a large amount of glass fibers within the material worsen the rheological properties and long fibers hinder flowability at narrow junctions and micro scale channels.


micro-CT fiber length distribution flowability numerical analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2015_3108_MOESM1_ESM.pdf (407 kb)
Supplementary material, approximately 1.04 MB.


  1. (1).
    B. Sha, S. Dimov, C. Griffiths, and M. S. Packianather, J. Mater. Process. Technol., 183, 284 (2007).CrossRefGoogle Scholar
  2. (2).
    A. Arbelaiz, B. Fernandez, G. Cantero, R. Llano-Ponte, A. Valea, and I. Mondragon, Comp. Part A: Appl. Sci. Manuf., 36, 1637 (2005).CrossRefGoogle Scholar
  3. (3).
    H. B. Shen, S. Nutt, and D. Hull, Comp. Sci. Technol., 64, 2113 (2004).CrossRefGoogle Scholar
  4. (4).
    S. H. Wu, F. Y. Wang, C. C. M. Ma, W. C. Chang, C. T. Kuo, H. C. Kuan, and W. J. Chen, Mater. Lett., 49, 327 (2001).CrossRefGoogle Scholar
  5. (5).
    A. R. Clarke, G. Archenhold, and N. C. Davidson, Comp. Sci. Technol., 55, 75 (1995).CrossRefGoogle Scholar
  6. (6).
    C. Eberhardt, and A. Clarke, Comp. Sci. Technol., 61, 1389 (2001).CrossRefGoogle Scholar
  7. (7).
    M. K. O'Connell, S. Murthy, S. Phan, C. Xu, J. Buchanan, R. Spilker, R. L. Dalman, C. K. Zarins, W. Denk, and C. A. Taylor, Matrix Biology, 27, 171 (2008).CrossRefGoogle Scholar
  8. (8).
    S. Roux, F. Hild, P. Viot, and D. Bernard, Comp. Part A: Appl. Sci. Manuf., 39, 1253 (2008).CrossRefGoogle Scholar
  9. (9).
    P. J. Schilling, B. P. R. Karedla, A. K. Tatiparthi, M. A. Verges, and P. D. Herrington, Comp. Sci. Technol., 65, 2071 (2005).CrossRefGoogle Scholar
  10. (10).
    Y. C. Chiang, R. Hickel, C. P. Lin, and K. H. Kunzelmann, Comp. Sci. Technol., 70, 989 (2010).CrossRefGoogle Scholar
  11. (11).
    D. J. Lee, H. Oh, Y. S. Song, and J. R. Youn, Comp. Sci. Technol., 72, 278 (2012).CrossRefGoogle Scholar
  12. (12).
    F. Awaja, M. T. Nguyen, S. N. Zhang, and B. Arhatari, Comp. Part A: Appl. Sci. Manuf., 42, 408 (2011).CrossRefGoogle Scholar
  13. (13).
    C. Renghini, V. Komlev, F. Fiori, E. Verne, F. Baino, and C. Vitale-Brovarone, Acta Biomaterialia, 5, 1328 (2009).CrossRefGoogle Scholar
  14. (14).
    Y. B. Jiang, J. Zhao, E. Y. Liao, R. C. Dai, X. P. Wu, and H. K. Genant, J. Bone Miner. Metabolism, 23, 122 (2005).CrossRefGoogle Scholar
  15. (15).
    S. Y. Fu and B. Lauke, Comp. Sci. Technol., 56, 1179 (1996).CrossRefGoogle Scholar
  16. (16).
    P. J. Hine, H. R. Lusti, and A. A. Gusev, Comp. Sci. Technol., 62, 1445 (2002).CrossRefGoogle Scholar
  17. (17).
    J. L. Thomason and M. A. Vlug, Comp. Part A: Appl. Sci. Manuf., 27, 477 (1996).CrossRefGoogle Scholar
  18. (18).
    M. Weber and M. R. Kamal, Polym. Comp., 18, 711 (1997).CrossRefGoogle Scholar
  19. (19).
    Y. Agari, A. Ueda, and S. Nagai, J. Appl. Polym. Sci., 43, 1117 (1991).CrossRefGoogle Scholar
  20. (20).
    S. Y. Fu and Y. W. Mai, J. Appl. Polym. Sci., 88, 1497 (2003).CrossRefGoogle Scholar
  21. (21).
    J. L. Thomason and W. M. Groenewoud, Comp. Part A: Appl. Sci. Manuf., 27, 555 (1996).CrossRefGoogle Scholar
  22. (22).
    R. J. Crowson and M. J. Folkes, Polym. Eng. Sci., 20, 934 (1980).CrossRefGoogle Scholar
  23. (23).
    R. B. Pipes, J. W. S. Hearle, A. J. Beaussart, and R. K. Okine, J. Compos. Mater., 25, 1379 (1991).Google Scholar
  24. (24).
    O. S. Carneiro and J. M. Maia, Polym. Comp., 21, 970 (2000).CrossRefGoogle Scholar
  25. (25).
    P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002).CrossRefGoogle Scholar
  26. (26).
    A. L. N. Silva, M. C. G. Rocha, and F. M. B. Coutinho, Polym. Test., 21, 289 (2002).CrossRefGoogle Scholar
  27. (27).
    Autodesk incorporation, Autodesk Simulation Moldflow Synergy, United States.Google Scholar
  28. (28).
    M. M. Cross, Rheologica Acta, 18, 609 (1979).CrossRefGoogle Scholar
  29. (29).
    J. Thomasset, P. J. Carreau, B. Sanschagrin, and G. Ausias, J. Non-Newtonian Fluid Mechanics, 125, 25 (2005).CrossRefGoogle Scholar
  30. (30).
    C. J. Seeton, Tribology Lett., 22, 67 (2006).CrossRefGoogle Scholar
  31. (31).
    D. Vanvelze, R. L. Cardozo, and H. Langenka, Ind. Eng. Chem. Fundamentals, 11, 20 (1972).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  • Soon Hyoung Hwang
    • 1
  • Doo Jin Lee
    • 1
  • Hye Rim Youn
    • 1
  • Young Seok Song
    • 2
  • Jae Ryoun Youn
    • 1
  1. 1.Research Institute of Advanced Materials (RIAM), Department of Materials Science and EngineeringSeoul National University, Daehak-Dong, Gwanak-GuSeoulKorea
  2. 2.Department of Fiber System EngineeringDankook UniversityGyeonggiKorea

Personalised recommendations