Skip to main content
Log in

Enhanced biological behavior of bacterial cellulose scaffold by creation of macropores and surface immobilization of collagen

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) is considered a promising three-dimensional (3D) nanofibrous scaffold for tissue engineering. To further improve its biological behavior, BC scaffold was modified by the creation of macropores and the immobilization of collagen (COL) on the surface. The creation of macropores was performed by laser perforation technique and the immobilization of collagen was achieved by solution immersion and subsequent crosslinking. The asprepared macroporous BC/COL nanocomposite (denoted as mBC/COL) was characterized by SEM, FTIR, contact angle measurement, and dynamic mechanical analysis, and its cell behavior was evaluated by MTT assay. SEM and FTIR confirmed the presence of collagen coating and patterned macropores (300 μm). Although the presence of macropores and collagen reduced its storage modulus and hydrophilicity, mBC/COL exhibited sufficient stiffness and wettability. More importantly, preliminary cell studies demonstrated that mBC/COL exhibited improved biological activity over BC and BC/COL due to the co-existence of macropores and collagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tanpichai, F. Quero, M. Nogi, H. Yano, R. J. Young, T. Lindstrom, W. W. Sampson, and S. J. Eichhorn, Biomacromolecules, 13, 1340 (2012).

    Article  CAS  Google Scholar 

  2. R. A. N. Pertile, S. Moreira, R. M. Gil da Costa, A. Correia, L. Guardao, F. Gartner, M. Vilanova, and M. Gama, J. Biomater. Sci. Polym. Ed., 23, 1339 (2012).

    CAS  Google Scholar 

  3. S. Saska, R. M. Scarel-Caminaga, L. N. Teixeira, L. P. Franchi, R. A. Dos Santos, A. M. M. Gaspar, P. T. de Oliveira, A. L. Rosa, C. S. Takahashi, Y. Messaddeq, S. J. L. Ribeiro, and R. Marchetto, J. Mater. Sci. Mater. Med., 23, 2253 (2012).

    Article  CAS  Google Scholar 

  4. H. Bäckdahl, G. Helenius, A. Bodin, U. Nannmark, B. R. Johansson, B. Risberg, and P. Gatenholm, Biomaterials, 27, 2141 (2006).

    Article  Google Scholar 

  5. H. Bäckdahl, M. Esguerra, D. Delbro, B. Risberg, and P. Gatenholm, J. Tissue Eng. Regen. Med., 2, 320 (2008).

    Article  Google Scholar 

  6. K. A. Zimmermann, J. M. LeBlanc, K. T. Sheets, R. W. Fox, and P. Gatenholm, Mater. Sci. Eng. C, 31, 43 (2011).

    Article  CAS  Google Scholar 

  7. W. K. Czaja, D. J. Young, M. Kawecki, and R. M. Brown, Jr., Biomacromolecules, 8, 1 (2007).

    Article  CAS  Google Scholar 

  8. J. C. Le Huec, T. Schaeverbeke, D. Clement, J. Faber, and A. Le Rebeller, Biomaterials, 16, 113 (1995).

    Article  Google Scholar 

  9. J. M. Taboas, R. D. Maddox, P. H. Krebsbach, and S. J. Hollister, Biomaterials, 24, 181 (2003).

    Article  CAS  Google Scholar 

  10. C. Gao, Y. Wan, C. Yang, K. Dai, T. Tang, H. Luo, and J. Wang, J. Porous. Mater., 18, 139 (2011).

    Article  CAS  Google Scholar 

  11. C. Gao, Y. Wan, X. Lei, J. Qu, T. Yan, and K. Dai, Cellulose, 18, 1555 (2011).

    Article  CAS  Google Scholar 

  12. H. J. Kim, U.-J. Kim, G. G. Leisk, C. Bayan, I. Georgakoudi, and D. L. Kaplan, Macromol. Biosci., 7, 643 (2007).

    Article  CAS  Google Scholar 

  13. G. Xiong, H. Luo, F. Gu, J. Zhang, D. Hu, and Y. Wan, J. Biomater. Nanobiotechnol., 4, 316 (2013).

    Article  Google Scholar 

  14. M. Zaborowska, A. Bodin, H. Backdahl, J. Popp, A. Goldstein, and P. Gatenholm, Acta Biomater., 6, 2540 (2010).

    Article  CAS  Google Scholar 

  15. H. Martinez, C. Brackmann, A. Enejder, and P. Gatenholm, J. Biomed. Mater. Res. Part A, 100A, 948 (2012).

    Article  CAS  Google Scholar 

  16. J. Wang, C. Yang, Y. Wan, H. Luo, F. He, K. Dai, and Y. Huang, Soft Mater., 11, 173 (2013).

    Article  CAS  Google Scholar 

  17. H. Ahrem, D. Pretzel, M. Endres, D. Conrad, J. Courseau, H. Mueller, R. Jaeger, C. Kaps, D. O. Klemm, and R. W. Kinne, Acta Biomater., 10, 1341 (2014).

    Article  CAS  Google Scholar 

  18. H. Luo, G. Xiong, Y. Huang, F. He, Y. Wang, and Y. Wan, Mater. Chem. Phys., 110, 193 (2008).

    Article  CAS  Google Scholar 

  19. S. Saska, L. N. Teixeira, P. T. de Oliveira, A. M. M. Gaspar, S. J. Lima Ribeiro, Y. Messaddeq, and R. Marchetto, J. Mater. Chem., 22, 22102 (2012).

    Article  CAS  Google Scholar 

  20. J. Wang, Y. Z. Wan, H. L. Luo, C. Gao, and Y. Huang, Mater. Sci. Eng. C, 32, 536 (2012).

    Article  CAS  Google Scholar 

  21. J. Wang, Y. Wan, J. Han, X. Lei, T. Yan, and C. Gao, Micro Nano Lett., 6, 133 (2011).

    Article  Google Scholar 

  22. S.-T. Chang, L.-C. Chen, S.-B. Lin, and H.-H. Chen, Food Hydrocoll., 27, 137 (2012).

    Article  CAS  Google Scholar 

  23. W.-C. Lin, C.-C. Lien, H.-J. Yeh, C.-M. Yu, and S.-H. Hsu, Carbohydr. Polym., 94, 603 (2013).

    Article  CAS  Google Scholar 

  24. V. Dubey, L. K. Pandey, and C. Saxena, J. Membr. Sci., 251, 131 (2005).

    Article  CAS  Google Scholar 

  25. J. Wang, Y. Wan, and Y. Huang, IET Nanobiotech, 6, 52 (2012).

    Article  CAS  Google Scholar 

  26. Y. Wan, C. Gao, M. Han, H. Liang, K. Ren, Y. Wang, and H. Luo, Polym. Adv. Technol., 22, 2643 (2011).

    Article  CAS  Google Scholar 

  27. S. Taokaew, S. Seetabhawang, P. Siripong, and M. Phisalaphong, Materials, 6, 782 (2013).

    Article  CAS  Google Scholar 

  28. M. Phisalaphong and N. Jatupaiboon, Carbohydr. Polym., 74, 482 (2008).

    Article  CAS  Google Scholar 

  29. J. Jin, G. Zuo, G. Xiong, H. Luo, Q. Li, C. Ma, D. Li, F. Gu, Y. Ma, and Y. Wan, J. Mater. Sci. Mater. Med., 25, 1025 (2014).

    Article  CAS  Google Scholar 

  30. H. Si, H. Luo, G. Xiong, Z. Yang, S. R. Raman, R. Guo, and Y. Wan, Macromol. Rapid Commun., 35, 1706 (2014).

    Article  CAS  Google Scholar 

  31. A. M. Ferreira, P. Gentile, V. Chiono, and G. Ciardelli, Acta Biomater., 8, 3191 (2012).

    Article  CAS  Google Scholar 

  32. L. Hong, Y. L. Wang, S. R. Jia, Y. Huang, C. Gao, and Y. Z. Wan, Mater. Lett., 60, 1710 (2006).

    Article  CAS  Google Scholar 

  33. Y. Z. Wan, L. Hong, S. R. Jia, Y. Huang, Y. Zhu, Y. L. Wang, and H. J. Jiang, Compos. Sci. Technol., 66, 1825 (2006).

    Article  CAS  Google Scholar 

  34. V. Karageorgiou and D. Kaplan, Biomaterials, 26, 5474 (2005).

    Article  CAS  Google Scholar 

  35. E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, and Y. Kuboki, J. Biochem., 121, 317 (1997).

    Article  CAS  Google Scholar 

  36. H. E. Gotz, M. Muller, A. Emmel, U. Holzwarth, R. G. Erben, and R. Stangl, Biomaterials, 25, 4057 (2004).

    Article  CAS  Google Scholar 

  37. C. J. Grande, F. G. Torres, C. M. Gomez, O. P. Troncoso, J. Canet-Ferrer, and J. Martínez-Pastor, Mater. Sci. Eng. C, 29, 1098 (2009).

    Article  CAS  Google Scholar 

  38. C. Schindler, B. L. Williams, H. N. Patel, V. Thomas, and D. R. Dean, Polymer, 54, 6824 (2013).

    Article  CAS  Google Scholar 

  39. K. Pietrucha, Int. J. Biol. Macromol., 36, 299 (2005).

    Article  CAS  Google Scholar 

  40. M. V. Jose, V. Thomas, K. T. Johnson, D. R. Dean, and E. Nyairo, Acta Biomater., 5, 305 (2009).

    Article  CAS  Google Scholar 

  41. J. D. A. S. Pereira, R. C. T. Camargo, J. C. S. C. Filho, N. Alves, M. A. Rodriguez-Perez, and C. J. L. Constantino, Mater. Sci. Eng. C, 36, 226 (2014).

    Article  CAS  Google Scholar 

  42. Z. Cai and G. Yang, J. Appl. Polym. Sci., 120, 2938 (2011).

    Article  CAS  Google Scholar 

  43. C. Martinez-Ramos, A. Valles-Lluch, J. M. G. Verdugo, J. L. G. Ribelles, J. A. Barcia, A. B. Orts, J. M. S. Lopez, and M. M. Pradas, J. Biomed. Mater. Res. A, 100A, 3276 (2012).

    Article  CAS  Google Scholar 

  44. Y. Fukuda, W. Wang, S. Ichinose, H. Katakura, T. Mukai, and K. Takakuda, J. Biomed. Mater. Res. A, 102, 674 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizao Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, G., Luo, H., Zhang, C. et al. Enhanced biological behavior of bacterial cellulose scaffold by creation of macropores and surface immobilization of collagen. Macromol. Res. 23, 734–740 (2015). https://doi.org/10.1007/s13233-015-3099-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3099-9

Keywords

Navigation