Skip to main content
Log in

Flame-retarding behaviors of novel spirocyclic organo-phosphorus compounds based on pentaerythritol

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In order to find effective flame retardant for charrable polycarbonate (PC) and non-charrable acrylonitrilebutadiene- styrene copolymer (ABS), a series of novel organo-phosphorus compounds derived from 4-(hydroxymethyl)- 1-oxido-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane (HPO) flame retardant (FR) were synthesized and their flame retardancies were investigated for the mixtures containing PC or ABS. The successful synthesis of high purity FRs was verified by spectroscopic analysis, 1H and 31P nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). In an attempt to provide a basis to understand the flame retardancy behaviors of synthesized FRs, various other techniques such as thermal analysis and micro-scale calorimetry were employed. The flame retardancies were determined by UL-94 vertical test methods. The results show that V-0 ratings are achieved at 3-5 wt% loadings of FR for PC and V-1 rating at 30 wt% for ABS. This big difference is believed to be resulted from the fact that the main mechanism of flame retardancy is based on the condensed phase in the case of PC. Nevertheless, effective gas phase acting FR is needed for ABS containing mixtures. Both peak heat release rate obtained from micro-calorimeter experiments and the decomposition activation energy determined from differential scanning calorimetry (DSC) results are greatly reduced for the PC/FR mixtures, indicating that a stable insulating barrier is formed between fire and charrable PC containing substrate. On the other hand, ABS is a non-charrable polymer and the flame retardant acting in the gas phase is more desirable. The findings obtained in this study clearly implies that it would not be easy to find a promising phosphorus based FR which is good not only in flame retardancy but also in other properties such as hydrolytic and thermal stability for non-charrable polymer like ABS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Price, G. Anthony, and P. Carty, in Fire Retardant Materials, A. R. Horrocks and D. Price, Eds., Woodhead Publishing Ltd., England, 2001, pp 1–30.

  2. Y. Hu, F. You, and L. Song, in Fire Hazard Analysis and Evaluation of Polymeric Materials, Chemical industry press, Beijing, 2007.

    Google Scholar 

  3. S. Liu, H. Ye, Y. Zhou, J. He, Z. Jiang, J. Zhao, and X. Huang, Polym. Degrad. Stab., 91, 1808 (2006).

    Article  CAS  Google Scholar 

  4. P. Carty and S. White, Polymer, 35, 343 (1994).

    Article  CAS  Google Scholar 

  5. J. Troitzsch, in International Plastics Flammability Handbook, 2nd ed., Hanser Publications, New York, 1990, p 20.

    Google Scholar 

  6. D. Hoang and J. Kim, Polym. Degrad. Stab., 93, 36 (2008).

    Article  CAS  Google Scholar 

  7. J. Kim, K. Lee, K. Lee, J. Bae, J. Yang, and S. Hong, Polym. Degrad. Stab., 79, 201 (2003).

    Article  CAS  Google Scholar 

  8. D. Hoang, B. N. Jang, and J. Kim, Polym. Degrad. Stab., 93, 2042 (2008).

    Article  CAS  Google Scholar 

  9. S. V. Levchik, Proceedings of the 17th Annual BCC Conference on Recent Advances in Flame Retardancy of Polymeric Materials, Stamford, USA, 2006.

    Google Scholar 

  10. E. D. Weil and S. V. Levchik, J. Fire. Sci., 25, 241 (2007).

    Article  CAS  Google Scholar 

  11. S. V. Levchik and E. D. Weil, Polym. Int., 54, 11 (2005).

    Article  CAS  Google Scholar 

  12. S. V. Levchik and E. D. Weil, Polym. Int., 54, 981 (2005).

    Article  CAS  Google Scholar 

  13. S. V. Levchik and E. D. Weil, J. Fire Sci., 24, 345 (2006).

    Article  CAS  Google Scholar 

  14. G. R. Grubbs, M. E. Kleppick, and J. H. Magill, J. Appl. Polym. Sci., 27, 601 (1982).

    Article  CAS  Google Scholar 

  15. Y. Wang, B. Yi, B. Wu, B. Yang, and Y. Liu, J. Appl. Polym. Sci., 89, 882 (2003).

    Article  CAS  Google Scholar 

  16. D. W. Allen and E. C. Anderton, Polym. Degrad. Stab., 45, 399 (1994).

    Article  CAS  Google Scholar 

  17. K. H. Pawlowski and B. Schartel, Polym. Degrad. Stab., 93, 657 (2008).

    Article  CAS  Google Scholar 

  18. W. Zhou and H. Yang, Thermochim. Acta, 452, 43 (2007).

    Article  CAS  Google Scholar 

  19. H. Ma, L. Tong, Z. Xu, Z. Fang, Y. Jin, and F. Lu, Polym. Degrad. Stab., 92, 720 (2007).

    Article  CAS  Google Scholar 

  20. G. Fontaine, S. Bourbigot, and S. Duquesne, Polym. Degrad. Stab., 93, 68 (2008).

    Article  CAS  Google Scholar 

  21. H. Peng, Q. Zhou, D. Wang, L. Chen, and Y. Wang, J. Ind. Eng. Chem., 14, 589 (2008).

    Article  CAS  Google Scholar 

  22. F. Xie, Y. Wang, B. Yang, and Y. Liu, Macromol. Mater. Eng., 291, 247 (2006).

    Article  CAS  Google Scholar 

  23. J. E. Telschow, Phosphorus Sulfur Silicon Relat. Elem., 144-146, 33 (1999).

    Article  CAS  Google Scholar 

  24. P. Joseph and J. R. Ebdon, in Fire Retardant Materials: Recent Developments in Flame-Retarding Thermoplastics and Thermosets, A. R. Horrocks and D. Price, Eds., Woodhead Publishing Ltd., England, 2001, pp 220–63.

  25. Purnanand, P. D. Shakya, and S. Saxena, Phosphorus Sulfur Silicon Relat. Elem., 177, 1093 (2002).

    Article  Google Scholar 

  26. L. Maier, Phosphorus Sulfur Silicon Relat Elem, 47, 465 (1990).

    Article  CAS  Google Scholar 

  27. J. P. H. Martin and M. A. Stephen, J. Chem. Soc. Perkin Trans., 1, 736 (1981).

    Google Scholar 

  28. H. J. Harwood and D. W. Grisley, J. Am. Chem. Soc., 82, 423 (1960).

    Article  CAS  Google Scholar 

  29. O. Korpiun, R. A. Lewis, J. Chickos, and K. Mislow, J. Am. Chem. Soc., 90, 4842 (1968).

    Article  CAS  Google Scholar 

  30. Y. Halpern, US Patent 4,454,064 (1979).

    Google Scholar 

  31. F. J. Vyverberg and R. W. Chapman, US Patent 6,455,722 (2002).

    Google Scholar 

  32. T. Hatakeyama, in Handbook of Thermal Analysis, Z. Liu, Ed., Chemical Industry Press, Beijing, 1994, pp 47–48.

  33. T. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881 (1965).

    Article  CAS  Google Scholar 

  34. B. N. Jang and C. A. Wilkie, Thermochim. Acta, 433, 1 (2005).

    Article  CAS  Google Scholar 

  35. A. Lorenzetti, M. Modesti, S. Besco, D. Hrelja, and S. Donadi, Polym. Degrad. Stab., 96, 1455 (2011).

    Article  CAS  Google Scholar 

  36. U. Braun, A. I. Balabanovich, B. Schartel, U. Knoll, J. Artner, M. Ciesielski, M. Doring, R. Perez, J. K.W. Sandler, V. Altstadt, T. Hoffmann, and D. Pospiech, Polymer, 47, 8495 (2006).

    Article  CAS  Google Scholar 

  37. D. Price, L. K. Cunliffe, K. J. Bullett, T. R. Hull, G. J. Milnes, J. R. Ebdon, B. J. Hunt, and P. Joseph, Polym. Degrad. Stab., 92, 1101 (2007).

    Article  CAS  Google Scholar 

  38. C. Nguyen, M. Lee, and J. Kim, Polym. Adv. Technol., 22, 512 (2011).

    Article  CAS  Google Scholar 

  39. A. I. Balabanovich, Thermochim. Acta, 435, 188 (2005).

    Article  CAS  Google Scholar 

  40. ASTM Standard D7309, Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry, ASTM International, DOI: 10.1520/D7309-13 (2011).

  41. R. E. Lyon and R. N. Walters, J. Anal. Appl. Pyrolysis, 71, 27 (2004).

    Article  CAS  Google Scholar 

  42. G. Gallina, E. Bravin, C. Badalucco, G. Audisio, M. Armanini, A. D. Chirico, and F. Provasoli, Fire Mater., 22, 15 (1998).

    Article  CAS  Google Scholar 

  43. G. Camino, G. Martinasso, L. Costa, and R. Gobetto, Polym. Degrad. Stab., 28, 17 (1990).

    Article  CAS  Google Scholar 

  44. P. Lv, Z. Wang, K. Hu, and W. Fan, Polym. Degrad. Stab., 90, 523 (2005).

    Article  CAS  Google Scholar 

  45. G. Chen, B. Yang, and Y. Wang, J. Appl. Polym. Sci., 102, 4978 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhwan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, D., Kim, J. Flame-retarding behaviors of novel spirocyclic organo-phosphorus compounds based on pentaerythritol. Macromol. Res. 23, 579–591 (2015). https://doi.org/10.1007/s13233-015-3085-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3085-2

Keywords

Navigation