Skip to main content
Log in

Calcium carbonate-mineralized polymer nanoparticles for pH-responsive robust nanocarriers of docetaxel

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A calcium carbonate (CaCO3)-mineralized core-shell-corona micelle was evaluated as an intracellular nanocarrier of docetaxel (DTX). The polymer micelle consisting of the poly(ethylene glycol) coronal, the anionic poly(L-aspartic acid) middle shell, and the DTX-loaded hydrophobic poly(L-phenylalanine) core was used as a nanotemplate for CaCO3 mineralization was performed by initial electrostatic localization of calcium ions at the anionic PAsp middle shells, and the subsequent addition of carbonate anions to trigger the growth of CaCO3 around the PAsp middle shells. Even after mineralization, the micelle size and the spherical morphology were maintained. The CaCO3-mineralized micelles exhibited enhanced stability against micelle-disrupting surfactants and the serums. The mineralized CaCO3 layer could suppress DTX release efficiently at extracellular pH (7.4) but dissolve at an intracellular endosomal pH (pH ~ 5.0) to facilitate the DTX release. These results reveal the promising potential of CaCO3-mineralized polymer micelle as a stable and effective nanocarrier system in tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H. S. Han, J. Lee, H. R. Kim, S. Y. Chae, M. Kim, G. Saravanakumar, H. Y. Yoon, D. G. You, H. Ko, K. Kim, I. C. Kwon, J. C. Park, and J. H. Park, J. Control. Release, 168, 105 (2013).

    Article  CAS  Google Scholar 

  2. E. Fantechi, C. Innocenti, M. Zanardelli, M. Fittipaldi, E. Falvo, M. Carbo, V. Shullani, L. D. C. Mannelli, C. Ghelardini, A. M. Ferretti, A. Ponti, C. Sangregorio, and P. Ceci, ACS Nano, 8, 4705 (2014).

    Article  CAS  Google Scholar 

  3. M. Sivasubramanian, T. Thambi, and J. H. Park, Carbohydr. Polym., 97, 643 (2013).

    Article  CAS  Google Scholar 

  4. K. Fan, C. Cao, Y. Pan, D. Lu, D. Yang, J. Feng, L. Song, M. Liang, and X. Yan, Nat. Nanotechnol., 7, 459 (2012).

    Article  CAS  Google Scholar 

  5. E.-J. Cha, I.-C. Sun, S. C. Lee, K. Kim, I. C. Kwon, and C.-H. Ahn, Macromol. Res., 20, 319 (2012).

    Article  CAS  Google Scholar 

  6. H. T. Schmidt, B. L. Gray, P. A. Wingert, and A. E. Ostafin, Chem. Mater., 16, 4942 (2004).

    Article  CAS  Google Scholar 

  7. A. Sugawara, S. Yamane, K. Akiyoshi, Macromol. Rapid Commun., 27, 441 (2006).

    Article  CAS  Google Scholar 

  8. L. Addadi and S. Weiner, Proc. Natl. Acad. Sci. U.S.A., 50, 49 (1986).

    Google Scholar 

  9. S. Han, H. S. Han, S. C. Lee, Y. M. Kang, I. Kim, and J. H. Park, J. Mater. Chem., 21, 7996 (2011).

    Article  CAS  Google Scholar 

  10. Q. Xu, Y. Tanaka, and J. T. Czernuszka, Biomaterials, 28, 2687 (2007).

    Article  CAS  Google Scholar 

  11. H. J. Lee, S. E. Kim, I. K. Kwon, C. Park, C. Kim, J. Yang, and S. C. Lee, Chem. Commun., 46, 377 (2010).

    Article  CAS  Google Scholar 

  12. S.-U. Lee, K. H. Min, S. Y. Jeong, H. Bae, and S. C. Lee, Chem. Asian J., 8, 3222 (2013).

    Article  CAS  Google Scholar 

  13. K. H. Min, H. J. Lee, K. Kim, I. C. Kwon, S. Y. Jeong, and S. C. Lee, Biomaterials, 33, 5788 (2012).

    Article  CAS  Google Scholar 

  14. H. P. Rim, K. H. Min, H. J. Lee, S. Y. Jeong, and S. C. Lee, Angew. Chem. Int. Ed., 50, 8853 (2011).

    Article  CAS  Google Scholar 

  15. B. L. Smith, T. E. Schäffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stuckyk, D. E. Morse, and P. K. Hansma, Nature, 399, 761 (1999).

    Article  CAS  Google Scholar 

  16. D. V. Volodkin, N. I. Larionova, and G. B. Sukhorukov, Biomacromolecules, 5, 1962 (2004).

    Article  CAS  Google Scholar 

  17. O. Kreft, M. Prevot, H. Mohwald, and G. B. Sukhorukov, Angew. Chem., Int. Ed., 46, 5605 (2007).

    Article  CAS  Google Scholar 

  18. G. H. Choi, K. H. Min, and S. C. Lee, Macromol. Res., 22, 329 (2014).

    Article  CAS  Google Scholar 

  19. S. J. Lee, K. H. Min, H. J. Lee, A. N. Koo, H. P. Rim, B. J. Jeon, S. Y. Jeong, J. S. Heo, and S. C. Lee, Biomacromolecules, 12, 1224 (2011).

    Article  CAS  Google Scholar 

  20. A. Harada and K. Kataoka, Macromolecules, 31, 288 (1998).

    Article  CAS  Google Scholar 

  21. S. L. Goss, K. A. Lemons, J. E. Kerstetter, and R. H. Bogner, J. Pharm. Pharmacol., 59, 1485 (2007).

    Article  Google Scholar 

  22. P. J. D. Nido, P. Glynn, P. Buenaventura, G. Salama, A. P. Koretsky, Am. J. Physiol. Heart Circ. Physiol., 274, 728e41 (1998).

    Google Scholar 

  23. R. I. Fonteriz, S. D. I. A. Moreno, C. D. Lobaton, M. Montero, and J. Alvarez, Cell Calcium, 48, 61e9 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Cheon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.J., Min, K.H., Hwang, G.H. et al. Calcium carbonate-mineralized polymer nanoparticles for pH-responsive robust nanocarriers of docetaxel. Macromol. Res. 23, 111–117 (2015). https://doi.org/10.1007/s13233-015-3020-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3020-6

Keywords

Navigation