Skip to main content
Log in

Preparation of a new charged nanofiltration membrane based on polyelectrolyte complex by forced fouling induction for a household water purifier

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A new technique is introduced for the preparation of composite membranes based on the salting-out effect. The concept of this new technique consists of three parts: (i) polymer precipitation by the salting-out effect, (ii) blocking the pore structure by pressurizing the precipitated polymer particles (polyelectrolyte), and (iii) deposition of opposite charged polyelectrolyte through ionic cross-linking (polyelectrolyte complex). The pore blocked polyelectrolyte has the role of a membrane, and we called this membrane preparation technique by forced fouling induction “precipitated solute pressurization” (PSP). In this study, water-soluble polymers that are all polyelectrolytes were used as coating materials, namely polyethylenimine (PEI), poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA), and poly(vinyl sulfonic acid) (PVSA). The polymer particles formed by the addition of Mg(NO3)2·6H2O were pressurized and flown to the surface of microporous polyvinyledene fluoride (PVDF) to prepare composite membranes under varying conditions of polyelectrolyte concentration, ionic strength of salt, pressure, annealing temperature, etc. The resulting membranes were characterized in terms of the flux and rejection for 100 ppm NaCl at 4 atm to determine their suitability for application in a household water purifier. A combination of PVSA and PEI polyelectrolyte complex produced by the PSP method showed the best performance of flux of 43 LMH and salt rejection rate of 83%, and this performance was maintained without loss of flux or rejection rate in a durability test carried out for 10 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Lu, X. Bian, and L. Shi, J. Membr. Sci., 210, 3 (2002).

    Article  CAS  Google Scholar 

  2. A. I. Schäfer, A. G. Fane, and T. D. Waite, Water Res., 36, 1509 (2001).

    Article  Google Scholar 

  3. A. Gorenflo, D. Velazquez-Padron, and F. H. Frimmel, Desalination 151, 253 (2002).

    Article  Google Scholar 

  4. R. J. Petersen, J. Membr. Sci., 83, 81 (1993).

    CAS  Google Scholar 

  5. R. J. Petersen and J. E. Cadotte, Thin Film Composite Reverse Osmosis Membranes, in Handbook of Industrial Membrane Technology, M. C. Porter, Ed., Noyes Publications, Park Ridge, 1990.

  6. C. Y. Tang, Q. S. Fu, A. P. Robertson, C. S. Criddle, and J. O. Leckie, Environ. Sci. Technol., 40, 7343 (2006).

    Article  CAS  Google Scholar 

  7. C. Y. Tang, Y.-N. Kwon, and J. O. Leckie, J. Membr. Sci., 287, 146 (2007).

    Article  CAS  Google Scholar 

  8. C. Y. Tang, Y.-N. Kwon, and J. O. Leckie, Desalination, 242, 149 (2009).

    Article  CAS  Google Scholar 

  9. I.-C. Kim, H.-G. Yoon, and K.-H. Lee, J. Appl. Polym. Sci., 84, 1300 (2002).

    Article  CAS  Google Scholar 

  10. D. A. Musale and A. Kumar, Sep. Purif. Technol. 21, 27 (2000).

    Article  CAS  Google Scholar 

  11. G. Decher, Science, 277, 1232 (1997).

    Article  CAS  Google Scholar 

  12. B. W. Stanton, J. J. Harris, M. D. Miller, and M. L. Bruening, Langmuir, 19, 7038 (2003).

    Article  CAS  Google Scholar 

  13. S. U. Hong and M. L. Bruening, J. Membr. Sci., 280, 1 (2006).

    Article  CAS  Google Scholar 

  14. X. F. Li, S. D. Feyter, D. J. Chen, S. Aldea, P. Vandezande, F. D. Prez, and I. F. J. Vankelecom, Chem. Mater., 20, 3876 (2008).

    Article  CAS  Google Scholar 

  15. J. Miao, G. H. Chen, and C. J. Gao, Desalination, 181, 173 (2005).

    Article  CAS  Google Scholar 

  16. R. H. Huang, G. H. Chen, M. K. Sun, Y. M. Hu, C. J. Gao, J. Membr. Sci., 286, 237 (2006).

    Article  CAS  Google Scholar 

  17. T. T. Dong, G. H. Chen, C. J. Gao, J. Membr. Sci., 304, 33 (2007).

    Article  CAS  Google Scholar 

  18. R. H. Huang, G. H. Chen, M. K. Sun, and C. J. Gao, Desalination, 239, 38 (2009).

    Article  CAS  Google Scholar 

  19. T. W. Xu and W. H. Yang, J. Membr. Sci., 215, 25 (2003).

    Article  CAS  Google Scholar 

  20. H. T. Jin, Q. F. An, Q. Zhao, J. W. Qian, and M. H. Zhu, J. Membr. Sci., 347, 183 (2010).

    Article  CAS  Google Scholar 

  21. Y. M. Guo, W. Geng, and J. Q. Sun, Langmuir, 25, 1004 (2009).

    Article  CAS  Google Scholar 

  22. Y. Ji, Q. Ana, Q. Zhao, H. Chen, J. Qian, and C. Gao, J. Membr. Sci., 357, 80 (2010).

    Article  CAS  Google Scholar 

  23. J. W. Rhim, B. Lee, H. H. Park, and C. H. Seo, Macromol. Res., 22, 361 (2014).

    Article  CAS  Google Scholar 

  24. S. I. Cheong, B. Kim, H. Lee, and J. W. Rhim, Macromol. Res., 20, 629 (2013).

    Article  Google Scholar 

  25. C. J. Park, S. P. Kim, S. I. Cheong, and J. W. Rhim, Polym. Korea, 36, 810 (2012).

    Article  CAS  Google Scholar 

  26. B. Kim, H. Lee, B. Lee, S. Kim, S. I. Cheong, and J. W. Rhim, Polym. Korea, 35, 438 (2011).

    CAS  Google Scholar 

  27. P. D. Ries and C. J. McDonald, WO 95/03878 (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Won Rhim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, E.H., Rhim, J.W. Preparation of a new charged nanofiltration membrane based on polyelectrolyte complex by forced fouling induction for a household water purifier. Macromol. Res. 23, 183–188 (2015). https://doi.org/10.1007/s13233-015-3017-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3017-1

Keywords

Navigation