Macromolecular Research

, Volume 22, Issue 11, pp 1190–1195 | Cite as

Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries



In this study, we demonstrated the effects of aluminum oxide (Al2O3)-based ceramic coatings deposited by radio-frequency (RF) magnetron sputtering on commercial polyethylene (PE) microporous separators. Due to the superb thermal stability of the ceramic materials themselves, the Al2O3 coatings solved the chronic thermal shrinkage problem of PE separators. Separators with sputtered Al2O3 coatings maintained their initial dimensions even after high temperature exposure at 140 °C for 30 min. The sputtered Al2O3 layer effectively changed the surface of a PE separator from being hydrophobic to hydrophilic too, improving its wettability with liquid electrolyte. Additionally, a sputtered Al2O3 coating can improve the rate capability (~130%) compared with a bare PE separator under a high current density (7.75 mA cm-2, 5 C rate) because the layer does not require additional use of polymeric binder materials, which usually inhibit the formation of pore structures in microporous membranes.


separators aluminum oxide ceramic coating sputtering lithium ion batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. Tripathi, T. N. Ramesh, B. L. Ellis, and L. F. Nazar, Angew.Chem., 122, 8920 (2010).CrossRefGoogle Scholar
  2. (2).
    P. Barpanda, M. Ati, B. C. Melot, G. Rousse, J.-N. Chotard, M.-L. Doublet, M. T. Sougrati, S. Corr, J.-C. Jumas, and J.-M. Tarascon, Nat. Mater., 10, 772 (2011).CrossRefGoogle Scholar
  3. (3).
    M. Thakur, R. B. Pernites, N. Nitta, M. Isaacson, S. L. Sinsabaugh, M. S. Wong, and S. L. Biswal, Chem. Mater., 24, 2998 (2012).CrossRefGoogle Scholar
  4. (4).
    M.-H. Ryou, Y. M. Lee, J.-K. Park, and J. W. Choi, Adv. Mater., 23, 3066 (2011).CrossRefGoogle Scholar
  5. (5).
    P. Arora and Z. Zhang, Chem. Rev., 104, 4419 (2004).CrossRefGoogle Scholar
  6. (6).
    S. M. Kang, M.-H. Ryou, J. W. Choi, and H. Lee, Chem. Mater., 24, 3481 (2012).CrossRefGoogle Scholar
  7. (7).
    S. S. Zhang, J. Power Sources, 164, 351 (2007).CrossRefGoogle Scholar
  8. (8).
    H.-S. Jeong, E.-S. Choi, and S.-Y. Lee, Electrochim. Acta, 86, 317 (2012).CrossRefGoogle Scholar
  9. (9).
    J. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Pang, L. Yue, X. Wang, J. Yao, and G. Cui, ACS Appl. Mater. Interfaces, 5, 128 (2012).CrossRefGoogle Scholar
  10. (10).
    M.-H. Ryou, D. J. Lee, J.-N. Lee, Y. M. Lee, J.-K. Park, and J. W. Choi, Adv. Energy Mater., 2, 645 (2012).CrossRefGoogle Scholar
  11. (11).
    J.-A. Choi, S. H. Kim, and D.-W. Kim, J. Power Sources, 195, 6192 (2010).CrossRefGoogle Scholar
  12. (12).
    H.-S. Jeong, D.-W. Kim, Y. U. Jeong, and S.-Y. Lee, J. Power Sources, 195, 6116 (2010).CrossRefGoogle Scholar
  13. (13).
    M. Kim, G. Y. Han, K. J. Yoon, and J. H. Park, J. Power Sources, 195, 8302 (2010).CrossRefGoogle Scholar
  14. (14).
    M. Kim and J. H. Park, J. Power Sources, 212, 22 (2012).CrossRefGoogle Scholar
  15. (15).
    D. Fu, B. Luan, S. Argue, M. N. Bureau, and I. J. Davidson, J. Power Sources, 206, 325 (2012).CrossRefGoogle Scholar
  16. (16).
    J. Y. Lee, Y. M. Lee, B. Bhattacharya, Y.-C. Nho, and J.-K. Park, Electrochim. Acta, 54, 4312 (2009).CrossRefGoogle Scholar
  17. (17).
    P. P. Prosini, P. Villano, and M. Carewska, Electrochim. Acta, 48, 227 (2002).CrossRefGoogle Scholar
  18. (18).
    S. Zhang, K. Xu, and T. Jow, J. Power Sources, 140, 361 (2005).CrossRefGoogle Scholar
  19. (19).
    G. Bräuer, B. Szyszka, M. Vergöhl, and R. Bandorf, Vacuum, 84, 1354 (2010).CrossRefGoogle Scholar
  20. (20).
    G. Sberveglieri, G. Faglia, S. Groppelli, and P. Nelli, Sens. Actuators B: Chem., 8, 79 (1992).CrossRefGoogle Scholar
  21. (21).
    N. H. Kim and H. W. Kim, Mater. Lett., 58, 938 (2004).CrossRefGoogle Scholar
  22. (22).
    S.-K. Wang, T.-C. Lin, S.-R. Jian, J.-Y. Juang, J. S.-C. Jang, and J.-Y. Tseng, Appl. Surf. Sci., 258, 1261 (2011).CrossRefGoogle Scholar
  23. (23).
    K. Wörhoff, J. D. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, IEEE J. Quantum Electron., 45, 454 (2009).CrossRefGoogle Scholar
  24. (24).
    C.-L. Liao and K.-Z. Fung, J. Power Sources, 128, 263 (2004).CrossRefGoogle Scholar
  25. (25).
    J. Y. Choi, D. J. Lee, Y. M. Lee, Y. G. Lee, K. M. Kim, J. K. Park, and K. Y. Cho, Adv. Funct. Mater., 23, 2108 (2012).CrossRefGoogle Scholar
  26. (26).
    F. F. Cao, J. W. Deng, S. Xin, H. X. Ji, O. G. Schmidt, L. J. Wan, and Y. G. Guo, Adv. Mater., 23, 4415 (2011).CrossRefGoogle Scholar
  27. (27).
    A. Patil, V. Patil, D. W. Shin, J.-W. Choi, D.-S. Paik, and S.-J. Yoon, Mater. Res. Bull., 43, 1913 (2008).CrossRefGoogle Scholar
  28. (28).
    J. Song, M.-H. Ryou, B. Son, J.-N. Lee, D. J. Lee, Y. M. Lee, J. W. Choi, and J.-K. Park, Electrochim. Acta, 85, 524 (2012).CrossRefGoogle Scholar
  29. (29).
    D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, Solid State Ionics, 148, 405 (2002).CrossRefGoogle Scholar
  30. (30).
    K. J. Kim, Y. H. Kim, J. H. Song, Y. N. Jo, J.-S. Kim, and Y.-J. Kim, J. Power Sources, 195, 6075 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringHanbat National University, Deokmyoung-dongYuseong-gu, DaejeonKorea
  2. 2.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyYuseong-gu, DaejeonKorea

Personalised recommendations